...
Run Format

Source file test/map.go

Documentation: test

  // run
  
  // Copyright 2009 The Go Authors. All rights reserved.
  // Use of this source code is governed by a BSD-style
  // license that can be found in the LICENSE file.
  
  // Test maps, almost exhaustively.
  // Complexity (linearity) test is in maplinear.go.
  
  package main
  
  import (
  	"fmt"
  	"math"
  	"strconv"
  )
  
  const count = 100
  
  func P(a []string) string {
  	s := "{"
  	for i := 0; i < len(a); i++ {
  		if i > 0 {
  			s += ","
  		}
  		s += `"` + a[i] + `"`
  	}
  	s += "}"
  	return s
  }
  
  func main() {
  	testbasic()
  	testfloat()
  	testnan()
  }
  
  func testbasic() {
  	// Test a map literal.
  	mlit := map[string]int{"0": 0, "1": 1, "2": 2, "3": 3, "4": 4}
  	for i := 0; i < len(mlit); i++ {
  		s := string([]byte{byte(i) + '0'})
  		if mlit[s] != i {
  			panic(fmt.Sprintf("mlit[%s] = %d\n", s, mlit[s]))
  		}
  	}
  
  	mib := make(map[int]bool)
  	mii := make(map[int]int)
  	mfi := make(map[float32]int)
  	mif := make(map[int]float32)
  	msi := make(map[string]int)
  	mis := make(map[int]string)
  	mss := make(map[string]string)
  	mspa := make(map[string][]string)
  	// BUG need an interface map both ways too
  
  	type T struct {
  		i int64 // can't use string here; struct values are only compared at the top level
  		f float32
  	}
  	mipT := make(map[int]*T)
  	mpTi := make(map[*T]int)
  	mit := make(map[int]T)
  	//	mti := make(map[T] int)
  
  	type M map[int]int
  	mipM := make(map[int]M)
  
  	var apT [2 * count]*T
  
  	for i := 0; i < count; i++ {
  		s := strconv.Itoa(i)
  		s10 := strconv.Itoa(i * 10)
  		f := float32(i)
  		t := T{int64(i), f}
  		apT[i] = new(T)
  		apT[i].i = int64(i)
  		apT[i].f = f
  		apT[2*i] = new(T) // need twice as many entries as we use, for the nonexistence check
  		apT[2*i].i = int64(i)
  		apT[2*i].f = f
  		m := M{i: i + 1}
  		mib[i] = (i != 0)
  		mii[i] = 10 * i
  		mfi[float32(i)] = 10 * i
  		mif[i] = 10.0 * f
  		mis[i] = s
  		msi[s] = i
  		mss[s] = s10
  		mss[s] = s10
  		as := make([]string, 2)
  		as[0] = s10
  		as[1] = s10
  		mspa[s] = as
  		mipT[i] = apT[i]
  		mpTi[apT[i]] = i
  		mipM[i] = m
  		mit[i] = t
  		//	mti[t] = i
  	}
  
  	// test len
  	if len(mib) != count {
  		panic(fmt.Sprintf("len(mib) = %d\n", len(mib)))
  	}
  	if len(mii) != count {
  		panic(fmt.Sprintf("len(mii) = %d\n", len(mii)))
  	}
  	if len(mfi) != count {
  		panic(fmt.Sprintf("len(mfi) = %d\n", len(mfi)))
  	}
  	if len(mif) != count {
  		panic(fmt.Sprintf("len(mif) = %d\n", len(mif)))
  	}
  	if len(msi) != count {
  		panic(fmt.Sprintf("len(msi) = %d\n", len(msi)))
  	}
  	if len(mis) != count {
  		panic(fmt.Sprintf("len(mis) = %d\n", len(mis)))
  	}
  	if len(mss) != count {
  		panic(fmt.Sprintf("len(mss) = %d\n", len(mss)))
  	}
  	if len(mspa) != count {
  		panic(fmt.Sprintf("len(mspa) = %d\n", len(mspa)))
  	}
  	if len(mipT) != count {
  		panic(fmt.Sprintf("len(mipT) = %d\n", len(mipT)))
  	}
  	if len(mpTi) != count {
  		panic(fmt.Sprintf("len(mpTi) = %d\n", len(mpTi)))
  	}
  	//	if len(mti) != count {
  	//              panic(fmt.Sprintf("len(mti) = %d\n", len(mti)))
  	//	}
  	if len(mipM) != count {
  		panic(fmt.Sprintf("len(mipM) = %d\n", len(mipM)))
  	}
  	//	if len(mti) != count {
  	//		panic(fmt.Sprintf("len(mti) = %d\n", len(mti)))
  	//	}
  	if len(mit) != count {
  		panic(fmt.Sprintf("len(mit) = %d\n", len(mit)))
  	}
  
  	// test construction directly
  	for i := 0; i < count; i++ {
  		s := strconv.Itoa(i)
  		s10 := strconv.Itoa(i * 10)
  		f := float32(i)
  		// BUG m := M(i, i+1)
  		if mib[i] != (i != 0) {
  			panic(fmt.Sprintf("mib[%d] = %t\n", i, mib[i]))
  		}
  		if mii[i] != 10*i {
  			panic(fmt.Sprintf("mii[%d] = %d\n", i, mii[i]))
  		}
  		if mfi[f] != 10*i {
  			panic(fmt.Sprintf("mfi[%d] = %d\n", i, mfi[f]))
  		}
  		if mif[i] != 10.0*f {
  			panic(fmt.Sprintf("mif[%d] = %g\n", i, mif[i]))
  		}
  		if mis[i] != s {
  			panic(fmt.Sprintf("mis[%d] = %s\n", i, mis[i]))
  		}
  		if msi[s] != i {
  			panic(fmt.Sprintf("msi[%s] = %d\n", s, msi[s]))
  		}
  		if mss[s] != s10 {
  			panic(fmt.Sprintf("mss[%s] = %g\n", s, mss[s]))
  		}
  		for j := 0; j < len(mspa[s]); j++ {
  			if mspa[s][j] != s10 {
  				panic(fmt.Sprintf("mspa[%s][%d] = %s\n", s, j, mspa[s][j]))
  			}
  		}
  		if mipT[i].i != int64(i) || mipT[i].f != f {
  			panic(fmt.Sprintf("mipT[%d] = %v\n", i, mipT[i]))
  		}
  		if mpTi[apT[i]] != i {
  			panic(fmt.Sprintf("mpTi[apT[%d]] = %d\n", i, mpTi[apT[i]]))
  		}
  		//	if(mti[t] != i) {
  		//		panic(fmt.Sprintf("mti[%s] = %s\n", s, mti[t]))
  		//	}
  		if mipM[i][i] != i+1 {
  			panic(fmt.Sprintf("mipM[%d][%d] = %d\n", i, i, mipM[i][i]))
  		}
  		//	if(mti[t] != i) {
  		//		panic(fmt.Sprintf("mti[%v] = %d\n", t, mti[t]))
  		//	}
  		if mit[i].i != int64(i) || mit[i].f != f {
  			panic(fmt.Sprintf("mit[%d] = {%d %g}\n", i, mit[i].i, mit[i].f))
  		}
  	}
  
  	// test existence with tuple check
  	// failed lookups yield a false value for the boolean.
  	for i := 0; i < count; i++ {
  		s := strconv.Itoa(i)
  		f := float32(i)
  		{
  			_, b := mib[i]
  			if !b {
  				panic(fmt.Sprintf("tuple existence decl: mib[%d]\n", i))
  			}
  			_, b = mib[i]
  			if !b {
  				panic(fmt.Sprintf("tuple existence assign: mib[%d]\n", i))
  			}
  		}
  		{
  			_, b := mii[i]
  			if !b {
  				panic(fmt.Sprintf("tuple existence decl: mii[%d]\n", i))
  			}
  			_, b = mii[i]
  			if !b {
  				panic(fmt.Sprintf("tuple existence assign: mii[%d]\n", i))
  			}
  		}
  		{
  			_, b := mfi[f]
  			if !b {
  				panic(fmt.Sprintf("tuple existence decl: mfi[%d]\n", i))
  			}
  			_, b = mfi[f]
  			if !b {
  				panic(fmt.Sprintf("tuple existence assign: mfi[%d]\n", i))
  			}
  		}
  		{
  			_, b := mif[i]
  			if !b {
  				panic(fmt.Sprintf("tuple existence decl: mif[%d]\n", i))
  			}
  			_, b = mif[i]
  			if !b {
  				panic(fmt.Sprintf("tuple existence assign: mif[%d]\n", i))
  			}
  		}
  		{
  			_, b := mis[i]
  			if !b {
  				panic(fmt.Sprintf("tuple existence decl: mis[%d]\n", i))
  			}
  			_, b = mis[i]
  			if !b {
  				panic(fmt.Sprintf("tuple existence assign: mis[%d]\n", i))
  			}
  		}
  		{
  			_, b := msi[s]
  			if !b {
  				panic(fmt.Sprintf("tuple existence decl: msi[%d]\n", i))
  			}
  			_, b = msi[s]
  			if !b {
  				panic(fmt.Sprintf("tuple existence assign: msi[%d]\n", i))
  			}
  		}
  		{
  			_, b := mss[s]
  			if !b {
  				panic(fmt.Sprintf("tuple existence decl: mss[%d]\n", i))
  			}
  			_, b = mss[s]
  			if !b {
  				panic(fmt.Sprintf("tuple existence assign: mss[%d]\n", i))
  			}
  		}
  		{
  			_, b := mspa[s]
  			if !b {
  				panic(fmt.Sprintf("tuple existence decl: mspa[%d]\n", i))
  			}
  			_, b = mspa[s]
  			if !b {
  				panic(fmt.Sprintf("tuple existence assign: mspa[%d]\n", i))
  			}
  		}
  		{
  			_, b := mipT[i]
  			if !b {
  				panic(fmt.Sprintf("tuple existence decl: mipT[%d]\n", i))
  			}
  			_, b = mipT[i]
  			if !b {
  				panic(fmt.Sprintf("tuple existence assign: mipT[%d]\n", i))
  			}
  		}
  		{
  			_, b := mpTi[apT[i]]
  			if !b {
  				panic(fmt.Sprintf("tuple existence decl: mpTi[apT[%d]]\n", i))
  			}
  			_, b = mpTi[apT[i]]
  			if !b {
  				panic(fmt.Sprintf("tuple existence assign: mpTi[apT[%d]]\n", i))
  			}
  		}
  		{
  			_, b := mipM[i]
  			if !b {
  				panic(fmt.Sprintf("tuple existence decl: mipM[%d]\n", i))
  			}
  			_, b = mipM[i]
  			if !b {
  				panic(fmt.Sprintf("tuple existence assign: mipM[%d]\n", i))
  			}
  		}
  		{
  			_, b := mit[i]
  			if !b {
  				panic(fmt.Sprintf("tuple existence decl: mit[%d]\n", i))
  			}
  			_, b = mit[i]
  			if !b {
  				panic(fmt.Sprintf("tuple existence assign: mit[%d]\n", i))
  			}
  		}
  		//		{
  		//			_, b := mti[t]
  		//			if !b {
  		//				panic(fmt.Sprintf("tuple existence decl: mti[%d]\n", i))
  		//			}
  		//			_, b = mti[t]
  		//			if !b {
  		//				panic(fmt.Sprintf("tuple existence assign: mti[%d]\n", i))
  		//			}
  		//		}
  	}
  
  	// test nonexistence with tuple check
  	// failed lookups yield a false value for the boolean.
  	for i := count; i < 2*count; i++ {
  		s := strconv.Itoa(i)
  		f := float32(i)
  		{
  			_, b := mib[i]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence decl: mib[%d]", i))
  			}
  			_, b = mib[i]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence assign: mib[%d]", i))
  			}
  		}
  		{
  			_, b := mii[i]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence decl: mii[%d]", i))
  			}
  			_, b = mii[i]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence assign: mii[%d]", i))
  			}
  		}
  		{
  			_, b := mfi[f]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence decl: mfi[%d]", i))
  			}
  			_, b = mfi[f]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence assign: mfi[%d]", i))
  			}
  		}
  		{
  			_, b := mif[i]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence decl: mif[%d]", i))
  			}
  			_, b = mif[i]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence assign: mif[%d]", i))
  			}
  		}
  		{
  			_, b := mis[i]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence decl: mis[%d]", i))
  			}
  			_, b = mis[i]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence assign: mis[%d]", i))
  			}
  		}
  		{
  			_, b := msi[s]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence decl: msi[%d]", i))
  			}
  			_, b = msi[s]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence assign: msi[%d]", i))
  			}
  		}
  		{
  			_, b := mss[s]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence decl: mss[%d]", i))
  			}
  			_, b = mss[s]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence assign: mss[%d]", i))
  			}
  		}
  		{
  			_, b := mspa[s]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence decl: mspa[%d]", i))
  			}
  			_, b = mspa[s]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence assign: mspa[%d]", i))
  			}
  		}
  		{
  			_, b := mipT[i]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence decl: mipT[%d]", i))
  			}
  			_, b = mipT[i]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence assign: mipT[%d]", i))
  			}
  		}
  		{
  			_, b := mpTi[apT[i]]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence decl: mpTi[apt[%d]]", i))
  			}
  			_, b = mpTi[apT[i]]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence assign: mpTi[apT[%d]]", i))
  			}
  		}
  		{
  			_, b := mipM[i]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence decl: mipM[%d]", i))
  			}
  			_, b = mipM[i]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence assign: mipM[%d]", i))
  			}
  		}
  		//		{
  		//			_, b := mti[t]
  		//			if b {
  		//				panic(fmt.Sprintf("tuple nonexistence decl: mti[%d]", i))
  		//			}
  		//			_, b = mti[t]
  		//			if b {
  		//				panic(fmt.Sprintf("tuple nonexistence assign: mti[%d]", i))
  		//			}
  		//		}
  		{
  			_, b := mit[i]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence decl: mit[%d]", i))
  			}
  			_, b = mit[i]
  			if b {
  				panic(fmt.Sprintf("tuple nonexistence assign: mit[%d]", i))
  			}
  		}
  	}
  
  	// tests for structured map element updates
  	for i := 0; i < count; i++ {
  		s := strconv.Itoa(i)
  		mspa[s][i%2] = "deleted"
  		if mspa[s][i%2] != "deleted" {
  			panic(fmt.Sprintf("update mspa[%s][%d] = %s\n", s, i%2, mspa[s][i%2]))
  
  		}
  
  		mipT[i].i += 1
  		if mipT[i].i != int64(i)+1 {
  			panic(fmt.Sprintf("update mipT[%d].i = %d\n", i, mipT[i].i))
  
  		}
  		mipT[i].f = float32(i + 1)
  		if mipT[i].f != float32(i+1) {
  			panic(fmt.Sprintf("update mipT[%d].f = %g\n", i, mipT[i].f))
  
  		}
  
  		mipM[i][i]++
  		if mipM[i][i] != (i+1)+1 {
  			panic(fmt.Sprintf("update mipM[%d][%d] = %d\n", i, i, mipM[i][i]))
  
  		}
  	}
  
  	// test range on nil map
  	var mnil map[string]int
  	for _, _ = range mnil {
  		panic("range mnil")
  	}
  }
  
  func testfloat() {
  	// Test floating point numbers in maps.
  	// Two map keys refer to the same entry if the keys are ==.
  	// The special cases, then, are that +0 == -0 and that NaN != NaN.
  
  	{
  		var (
  			pz   = float32(0)
  			nz   = math.Float32frombits(1 << 31)
  			nana = float32(math.NaN())
  			nanb = math.Float32frombits(math.Float32bits(nana) ^ 2)
  		)
  
  		m := map[float32]string{
  			pz:   "+0",
  			nana: "NaN",
  			nanb: "NaN",
  		}
  		if m[pz] != "+0" {
  			panic(fmt.Sprintln("float32 map cannot read back m[+0]:", m[pz]))
  		}
  		if m[nz] != "+0" {
  			fmt.Sprintln("float32 map does not treat", pz, "and", nz, "as equal for read")
  			panic(fmt.Sprintln("float32 map does not treat -0 and +0 as equal for read"))
  		}
  		m[nz] = "-0"
  		if m[pz] != "-0" {
  			panic(fmt.Sprintln("float32 map does not treat -0 and +0 as equal for write"))
  		}
  		if _, ok := m[nana]; ok {
  			panic(fmt.Sprintln("float32 map allows NaN lookup (a)"))
  		}
  		if _, ok := m[nanb]; ok {
  			panic(fmt.Sprintln("float32 map allows NaN lookup (b)"))
  		}
  		if len(m) != 3 {
  			panic(fmt.Sprintln("float32 map should have 3 entries:", m))
  		}
  		m[nana] = "NaN"
  		m[nanb] = "NaN"
  		if len(m) != 5 {
  			panic(fmt.Sprintln("float32 map should have 5 entries:", m))
  		}
  	}
  
  	{
  		var (
  			pz   = float64(0)
  			nz   = math.Float64frombits(1 << 63)
  			nana = float64(math.NaN())
  			nanb = math.Float64frombits(math.Float64bits(nana) ^ 2)
  		)
  
  		m := map[float64]string{
  			pz:   "+0",
  			nana: "NaN",
  			nanb: "NaN",
  		}
  		if m[nz] != "+0" {
  			panic(fmt.Sprintln("float64 map does not treat -0 and +0 as equal for read"))
  		}
  		m[nz] = "-0"
  		if m[pz] != "-0" {
  			panic(fmt.Sprintln("float64 map does not treat -0 and +0 as equal for write"))
  		}
  		if _, ok := m[nana]; ok {
  			panic(fmt.Sprintln("float64 map allows NaN lookup (a)"))
  		}
  		if _, ok := m[nanb]; ok {
  			panic(fmt.Sprintln("float64 map allows NaN lookup (b)"))
  		}
  		if len(m) != 3 {
  			panic(fmt.Sprintln("float64 map should have 3 entries:", m))
  		}
  		m[nana] = "NaN"
  		m[nanb] = "NaN"
  		if len(m) != 5 {
  			panic(fmt.Sprintln("float64 map should have 5 entries:", m))
  		}
  	}
  
  	{
  		var (
  			pz   = complex64(0)
  			nz   = complex(0, math.Float32frombits(1<<31))
  			nana = complex(5, float32(math.NaN()))
  			nanb = complex(5, math.Float32frombits(math.Float32bits(float32(math.NaN()))^2))
  		)
  
  		m := map[complex64]string{
  			pz:   "+0",
  			nana: "NaN",
  			nanb: "NaN",
  		}
  		if m[nz] != "+0" {
  			panic(fmt.Sprintln("complex64 map does not treat -0 and +0 as equal for read"))
  		}
  		m[nz] = "-0"
  		if m[pz] != "-0" {
  			panic(fmt.Sprintln("complex64 map does not treat -0 and +0 as equal for write"))
  		}
  		if _, ok := m[nana]; ok {
  			panic(fmt.Sprintln("complex64 map allows NaN lookup (a)"))
  		}
  		if _, ok := m[nanb]; ok {
  			panic(fmt.Sprintln("complex64 map allows NaN lookup (b)"))
  		}
  		if len(m) != 3 {
  			panic(fmt.Sprintln("complex64 map should have 3 entries:", m))
  		}
  		m[nana] = "NaN"
  		m[nanb] = "NaN"
  		if len(m) != 5 {
  			panic(fmt.Sprintln("complex64 map should have 5 entries:", m))
  		}
  	}
  
  	{
  		var (
  			pz   = complex128(0)
  			nz   = complex(0, math.Float64frombits(1<<63))
  			nana = complex(5, float64(math.NaN()))
  			nanb = complex(5, math.Float64frombits(math.Float64bits(float64(math.NaN()))^2))
  		)
  
  		m := map[complex128]string{
  			pz:   "+0",
  			nana: "NaN",
  			nanb: "NaN",
  		}
  		if m[nz] != "+0" {
  			panic(fmt.Sprintln("complex128 map does not treat -0 and +0 as equal for read"))
  		}
  		m[nz] = "-0"
  		if m[pz] != "-0" {
  			panic(fmt.Sprintln("complex128 map does not treat -0 and +0 as equal for write"))
  		}
  		if _, ok := m[nana]; ok {
  			panic(fmt.Sprintln("complex128 map allows NaN lookup (a)"))
  		}
  		if _, ok := m[nanb]; ok {
  			panic(fmt.Sprintln("complex128 map allows NaN lookup (b)"))
  		}
  		if len(m) != 3 {
  			panic(fmt.Sprintln("complex128 map should have 3 entries:", m))
  		}
  		m[nana] = "NaN"
  		m[nanb] = "NaN"
  		if len(m) != 5 {
  			panic(fmt.Sprintln("complex128 map should have 5 entries:", m))
  		}
  	}
  }
  
  func testnan() {
  	n := 500
  	m := map[float64]int{}
  	nan := math.NaN()
  	for i := 0; i < n; i++ {
  		m[nan] = 1
  	}
  	if len(m) != n {
  		panic("wrong size map after nan insertion")
  	}
  	iters := 0
  	for k, v := range m {
  		iters++
  		if !math.IsNaN(k) {
  			panic("not NaN")
  		}
  		if v != 1 {
  			panic("wrong value")
  		}
  	}
  	if iters != n {
  		panic("wrong number of nan range iters")
  	}
  }
  

View as plain text