// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package nettest import ( "bytes" "encoding/binary" "io" "io/ioutil" "math/rand" "net" "runtime" "sync" "testing" "time" ) // MakePipe creates a connection between two endpoints and returns the pair // as c1 and c2, such that anything written to c1 is read by c2 and vice-versa. // The stop function closes all resources, including c1, c2, and the underlying // net.Listener (if there is one), and should not be nil. type MakePipe func() (c1, c2 net.Conn, stop func(), err error) // TestConn tests that a net.Conn implementation properly satisfies the interface. // The tests should not produce any false positives, but may experience // false negatives. Thus, some issues may only be detected when the test is // run multiple times. For maximal effectiveness, run the tests under the // race detector. func TestConn(t *testing.T, mp MakePipe) { t.Run("BasicIO", func(t *testing.T) { timeoutWrapper(t, mp, testBasicIO) }) t.Run("PingPong", func(t *testing.T) { timeoutWrapper(t, mp, testPingPong) }) t.Run("RacyRead", func(t *testing.T) { timeoutWrapper(t, mp, testRacyRead) }) t.Run("RacyWrite", func(t *testing.T) { timeoutWrapper(t, mp, testRacyWrite) }) t.Run("ReadTimeout", func(t *testing.T) { timeoutWrapper(t, mp, testReadTimeout) }) t.Run("WriteTimeout", func(t *testing.T) { timeoutWrapper(t, mp, testWriteTimeout) }) t.Run("PastTimeout", func(t *testing.T) { timeoutWrapper(t, mp, testPastTimeout) }) t.Run("PresentTimeout", func(t *testing.T) { timeoutWrapper(t, mp, testPresentTimeout) }) t.Run("FutureTimeout", func(t *testing.T) { timeoutWrapper(t, mp, testFutureTimeout) }) t.Run("CloseTimeout", func(t *testing.T) { timeoutWrapper(t, mp, testCloseTimeout) }) t.Run("ConcurrentMethods", func(t *testing.T) { timeoutWrapper(t, mp, testConcurrentMethods) }) } type connTester func(t *testing.T, c1, c2 net.Conn) func timeoutWrapper(t *testing.T, mp MakePipe, f connTester) { t.Helper() c1, c2, stop, err := mp() if err != nil { t.Fatalf("unable to make pipe: %v", err) } var once sync.Once defer once.Do(func() { stop() }) timer := time.AfterFunc(time.Minute, func() { once.Do(func() { t.Error("test timed out; terminating pipe") stop() }) }) defer timer.Stop() f(t, c1, c2) } // testBasicIO tests that the data sent on c1 is properly received on c2. func testBasicIO(t *testing.T, c1, c2 net.Conn) { want := make([]byte, 1<<20) rand.New(rand.NewSource(0)).Read(want) dataCh := make(chan []byte) go func() { rd := bytes.NewReader(want) if err := chunkedCopy(c1, rd); err != nil { t.Errorf("unexpected c1.Write error: %v", err) } if err := c1.Close(); err != nil { t.Errorf("unexpected c1.Close error: %v", err) } }() go func() { wr := new(bytes.Buffer) if err := chunkedCopy(wr, c2); err != nil { t.Errorf("unexpected c2.Read error: %v", err) } if err := c2.Close(); err != nil { t.Errorf("unexpected c2.Close error: %v", err) } dataCh <- wr.Bytes() }() if got := <-dataCh; !bytes.Equal(got, want) { t.Error("transmitted data differs") } } // testPingPong tests that the two endpoints can synchronously send data to // each other in a typical request-response pattern. func testPingPong(t *testing.T, c1, c2 net.Conn) { var wg sync.WaitGroup defer wg.Wait() pingPonger := func(c net.Conn) { defer wg.Done() buf := make([]byte, 8) var prev uint64 for { if _, err := io.ReadFull(c, buf); err != nil { if err == io.EOF { break } t.Errorf("unexpected Read error: %v", err) } v := binary.LittleEndian.Uint64(buf) binary.LittleEndian.PutUint64(buf, v+1) if prev != 0 && prev+2 != v { t.Errorf("mismatching value: got %d, want %d", v, prev+2) } prev = v if v == 1000 { break } if _, err := c.Write(buf); err != nil { t.Errorf("unexpected Write error: %v", err) break } } if err := c.Close(); err != nil { t.Errorf("unexpected Close error: %v", err) } } wg.Add(2) go pingPonger(c1) go pingPonger(c2) // Start off the chain reaction. if _, err := c1.Write(make([]byte, 8)); err != nil { t.Errorf("unexpected c1.Write error: %v", err) } } // testRacyRead tests that it is safe to mutate the input Read buffer // immediately after cancelation has occurred. func testRacyRead(t *testing.T, c1, c2 net.Conn) { go chunkedCopy(c2, rand.New(rand.NewSource(0))) var wg sync.WaitGroup defer wg.Wait() c1.SetReadDeadline(time.Now().Add(time.Millisecond)) for i := 0; i < 10; i++ { wg.Add(1) go func() { defer wg.Done() b1 := make([]byte, 1024) b2 := make([]byte, 1024) for j := 0; j < 100; j++ { _, err := c1.Read(b1) copy(b1, b2) // Mutate b1 to trigger potential race if err != nil { checkForTimeoutError(t, err) c1.SetReadDeadline(time.Now().Add(time.Millisecond)) } } }() } } // testRacyWrite tests that it is safe to mutate the input Write buffer // immediately after cancelation has occurred. func testRacyWrite(t *testing.T, c1, c2 net.Conn) { go chunkedCopy(ioutil.Discard, c2) var wg sync.WaitGroup defer wg.Wait() c1.SetWriteDeadline(time.Now().Add(time.Millisecond)) for i := 0; i < 10; i++ { wg.Add(1) go func() { defer wg.Done() b1 := make([]byte, 1024) b2 := make([]byte, 1024) for j := 0; j < 100; j++ { _, err := c1.Write(b1) copy(b1, b2) // Mutate b1 to trigger potential race if err != nil { checkForTimeoutError(t, err) c1.SetWriteDeadline(time.Now().Add(time.Millisecond)) } } }() } } // testReadTimeout tests that Read timeouts do not affect Write. func testReadTimeout(t *testing.T, c1, c2 net.Conn) { go chunkedCopy(ioutil.Discard, c2) c1.SetReadDeadline(aLongTimeAgo) _, err := c1.Read(make([]byte, 1024)) checkForTimeoutError(t, err) if _, err := c1.Write(make([]byte, 1024)); err != nil { t.Errorf("unexpected Write error: %v", err) } } // testWriteTimeout tests that Write timeouts do not affect Read. func testWriteTimeout(t *testing.T, c1, c2 net.Conn) { go chunkedCopy(c2, rand.New(rand.NewSource(0))) c1.SetWriteDeadline(aLongTimeAgo) _, err := c1.Write(make([]byte, 1024)) checkForTimeoutError(t, err) if _, err := c1.Read(make([]byte, 1024)); err != nil { t.Errorf("unexpected Read error: %v", err) } } // testPastTimeout tests that a deadline set in the past immediately times out // Read and Write requests. func testPastTimeout(t *testing.T, c1, c2 net.Conn) { go chunkedCopy(c2, c2) testRoundtrip(t, c1) c1.SetDeadline(aLongTimeAgo) n, err := c1.Write(make([]byte, 1024)) if n != 0 { t.Errorf("unexpected Write count: got %d, want 0", n) } checkForTimeoutError(t, err) n, err = c1.Read(make([]byte, 1024)) if n != 0 { t.Errorf("unexpected Read count: got %d, want 0", n) } checkForTimeoutError(t, err) testRoundtrip(t, c1) } // testPresentTimeout tests that a past deadline set while there are pending // Read and Write operations immediately times out those operations. func testPresentTimeout(t *testing.T, c1, c2 net.Conn) { var wg sync.WaitGroup defer wg.Wait() wg.Add(3) deadlineSet := make(chan bool, 1) go func() { defer wg.Done() time.Sleep(100 * time.Millisecond) deadlineSet <- true c1.SetReadDeadline(aLongTimeAgo) c1.SetWriteDeadline(aLongTimeAgo) }() go func() { defer wg.Done() n, err := c1.Read(make([]byte, 1024)) if n != 0 { t.Errorf("unexpected Read count: got %d, want 0", n) } checkForTimeoutError(t, err) if len(deadlineSet) == 0 { t.Error("Read timed out before deadline is set") } }() go func() { defer wg.Done() var err error for err == nil { _, err = c1.Write(make([]byte, 1024)) } checkForTimeoutError(t, err) if len(deadlineSet) == 0 { t.Error("Write timed out before deadline is set") } }() } // testFutureTimeout tests that a future deadline will eventually time out // Read and Write operations. func testFutureTimeout(t *testing.T, c1, c2 net.Conn) { var wg sync.WaitGroup wg.Add(2) c1.SetDeadline(time.Now().Add(100 * time.Millisecond)) go func() { defer wg.Done() _, err := c1.Read(make([]byte, 1024)) checkForTimeoutError(t, err) }() go func() { defer wg.Done() var err error for err == nil { _, err = c1.Write(make([]byte, 1024)) } checkForTimeoutError(t, err) }() wg.Wait() go chunkedCopy(c2, c2) resyncConn(t, c1) testRoundtrip(t, c1) } // testCloseTimeout tests that calling Close immediately times out pending // Read and Write operations. func testCloseTimeout(t *testing.T, c1, c2 net.Conn) { go chunkedCopy(c2, c2) var wg sync.WaitGroup defer wg.Wait() wg.Add(3) // Test for cancelation upon connection closure. c1.SetDeadline(neverTimeout) go func() { defer wg.Done() time.Sleep(100 * time.Millisecond) c1.Close() }() go func() { defer wg.Done() var err error buf := make([]byte, 1024) for err == nil { _, err = c1.Read(buf) } }() go func() { defer wg.Done() var err error buf := make([]byte, 1024) for err == nil { _, err = c1.Write(buf) } }() } // testConcurrentMethods tests that the methods of net.Conn can safely // be called concurrently. func testConcurrentMethods(t *testing.T, c1, c2 net.Conn) { if runtime.GOOS == "plan9" { t.Skip("skipping on plan9; see https://golang.org/issue/20489") } go chunkedCopy(c2, c2) // The results of the calls may be nonsensical, but this should // not trigger a race detector warning. var wg sync.WaitGroup for i := 0; i < 100; i++ { wg.Add(7) go func() { defer wg.Done() c1.Read(make([]byte, 1024)) }() go func() { defer wg.Done() c1.Write(make([]byte, 1024)) }() go func() { defer wg.Done() c1.SetDeadline(time.Now().Add(10 * time.Millisecond)) }() go func() { defer wg.Done() c1.SetReadDeadline(aLongTimeAgo) }() go func() { defer wg.Done() c1.SetWriteDeadline(aLongTimeAgo) }() go func() { defer wg.Done() c1.LocalAddr() }() go func() { defer wg.Done() c1.RemoteAddr() }() } wg.Wait() // At worst, the deadline is set 10ms into the future resyncConn(t, c1) testRoundtrip(t, c1) } // checkForTimeoutError checks that the error satisfies the Error interface // and that Timeout returns true. func checkForTimeoutError(t *testing.T, err error) { t.Helper() if nerr, ok := err.(net.Error); ok { if !nerr.Timeout() { if runtime.GOOS == "windows" && runtime.GOARCH == "arm64" && t.Name() == "TestTestConn/TCP/RacyRead" { t.Logf("ignoring known failure mode on windows/arm64; see https://go.dev/issue/52893") } else { t.Errorf("got error: %v, want err.Timeout() = true", nerr) } } } else { t.Errorf("got %T: %v, want net.Error", err, err) } } // testRoundtrip writes something into c and reads it back. // It assumes that everything written into c is echoed back to itself. func testRoundtrip(t *testing.T, c net.Conn) { t.Helper() if err := c.SetDeadline(neverTimeout); err != nil { t.Errorf("roundtrip SetDeadline error: %v", err) } const s = "Hello, world!" buf := []byte(s) if _, err := c.Write(buf); err != nil { t.Errorf("roundtrip Write error: %v", err) } if _, err := io.ReadFull(c, buf); err != nil { t.Errorf("roundtrip Read error: %v", err) } if string(buf) != s { t.Errorf("roundtrip data mismatch: got %q, want %q", buf, s) } } // resyncConn resynchronizes the connection into a sane state. // It assumes that everything written into c is echoed back to itself. // It assumes that 0xff is not currently on the wire or in the read buffer. func resyncConn(t *testing.T, c net.Conn) { t.Helper() c.SetDeadline(neverTimeout) errCh := make(chan error) go func() { _, err := c.Write([]byte{0xff}) errCh <- err }() buf := make([]byte, 1024) for { n, err := c.Read(buf) if n > 0 && bytes.IndexByte(buf[:n], 0xff) == n-1 { break } if err != nil { t.Errorf("unexpected Read error: %v", err) break } } if err := <-errCh; err != nil { t.Errorf("unexpected Write error: %v", err) } } // chunkedCopy copies from r to w in fixed-width chunks to avoid // causing a Write that exceeds the maximum packet size for packet-based // connections like "unixpacket". // We assume that the maximum packet size is at least 1024. func chunkedCopy(w io.Writer, r io.Reader) error { b := make([]byte, 1024) _, err := io.CopyBuffer(struct{ io.Writer }{w}, struct{ io.Reader }{r}, b) return err }