...
Run Format

Source file src/testing/benchmark.go

  // Copyright 2009 The Go Authors. All rights reserved.
  // Use of this source code is governed by a BSD-style
  // license that can be found in the LICENSE file.
  
  package testing
  
  import (
  	"flag"
  	"fmt"
  	"internal/race"
  	"os"
  	"runtime"
  	"sync"
  	"sync/atomic"
  	"time"
  )
  
  var matchBenchmarks = flag.String("test.bench", "", "run only benchmarks matching `regexp`")
  var benchTime = flag.Duration("test.benchtime", 1*time.Second, "run each benchmark for duration `d`")
  var benchmarkMemory = flag.Bool("test.benchmem", false, "print memory allocations for benchmarks")
  
  // Global lock to ensure only one benchmark runs at a time.
  var benchmarkLock sync.Mutex
  
  // Used for every benchmark for measuring memory.
  var memStats runtime.MemStats
  
  // An internal type but exported because it is cross-package; part of the implementation
  // of the "go test" command.
  type InternalBenchmark struct {
  	Name string
  	F    func(b *B)
  }
  
  // B is a type passed to Benchmark functions to manage benchmark
  // timing and to specify the number of iterations to run.
  //
  // A benchmark ends when its Benchmark function returns or calls any of the methods
  // FailNow, Fatal, Fatalf, SkipNow, Skip, or Skipf. Those methods must be called
  // only from the goroutine running the Benchmark function.
  // The other reporting methods, such as the variations of Log and Error,
  // may be called simultaneously from multiple goroutines.
  //
  // Like in tests, benchmark logs are accumulated during execution
  // and dumped to standard error when done. Unlike in tests, benchmark logs
  // are always printed, so as not to hide output whose existence may be
  // affecting benchmark results.
  type B struct {
  	common
  	context          *benchContext
  	N                int
  	previousN        int           // number of iterations in the previous run
  	previousDuration time.Duration // total duration of the previous run
  	benchFunc        func(b *B)
  	benchTime        time.Duration
  	bytes            int64
  	missingBytes     bool // one of the subbenchmarks does not have bytes set.
  	timerOn          bool
  	showAllocResult  bool
  	result           BenchmarkResult
  	parallelism      int // RunParallel creates parallelism*GOMAXPROCS goroutines
  	// The initial states of memStats.Mallocs and memStats.TotalAlloc.
  	startAllocs uint64
  	startBytes  uint64
  	// The net total of this test after being run.
  	netAllocs uint64
  	netBytes  uint64
  }
  
  // StartTimer starts timing a test. This function is called automatically
  // before a benchmark starts, but it can also used to resume timing after
  // a call to StopTimer.
  func (b *B) StartTimer() {
  	if !b.timerOn {
  		runtime.ReadMemStats(&memStats)
  		b.startAllocs = memStats.Mallocs
  		b.startBytes = memStats.TotalAlloc
  		b.start = time.Now()
  		b.timerOn = true
  	}
  }
  
  // StopTimer stops timing a test. This can be used to pause the timer
  // while performing complex initialization that you don't
  // want to measure.
  func (b *B) StopTimer() {
  	if b.timerOn {
  		b.duration += time.Now().Sub(b.start)
  		runtime.ReadMemStats(&memStats)
  		b.netAllocs += memStats.Mallocs - b.startAllocs
  		b.netBytes += memStats.TotalAlloc - b.startBytes
  		b.timerOn = false
  	}
  }
  
  // ResetTimer zeros the elapsed benchmark time and memory allocation counters.
  // It does not affect whether the timer is running.
  func (b *B) ResetTimer() {
  	if b.timerOn {
  		runtime.ReadMemStats(&memStats)
  		b.startAllocs = memStats.Mallocs
  		b.startBytes = memStats.TotalAlloc
  		b.start = time.Now()
  	}
  	b.duration = 0
  	b.netAllocs = 0
  	b.netBytes = 0
  }
  
  // SetBytes records the number of bytes processed in a single operation.
  // If this is called, the benchmark will report ns/op and MB/s.
  func (b *B) SetBytes(n int64) { b.bytes = n }
  
  // ReportAllocs enables malloc statistics for this benchmark.
  // It is equivalent to setting -test.benchmem, but it only affects the
  // benchmark function that calls ReportAllocs.
  func (b *B) ReportAllocs() {
  	b.showAllocResult = true
  }
  
  func (b *B) nsPerOp() int64 {
  	if b.N <= 0 {
  		return 0
  	}
  	return b.duration.Nanoseconds() / int64(b.N)
  }
  
  // runN runs a single benchmark for the specified number of iterations.
  func (b *B) runN(n int) {
  	benchmarkLock.Lock()
  	defer benchmarkLock.Unlock()
  	// Try to get a comparable environment for each run
  	// by clearing garbage from previous runs.
  	runtime.GC()
  	b.raceErrors = -race.Errors()
  	b.N = n
  	b.parallelism = 1
  	b.ResetTimer()
  	b.StartTimer()
  	b.benchFunc(b)
  	b.StopTimer()
  	b.previousN = n
  	b.previousDuration = b.duration
  	b.raceErrors += race.Errors()
  	if b.raceErrors > 0 {
  		b.Errorf("race detected during execution of benchmark")
  	}
  }
  
  func min(x, y int) int {
  	if x > y {
  		return y
  	}
  	return x
  }
  
  func max(x, y int) int {
  	if x < y {
  		return y
  	}
  	return x
  }
  
  // roundDown10 rounds a number down to the nearest power of 10.
  func roundDown10(n int) int {
  	var tens = 0
  	// tens = floor(log_10(n))
  	for n >= 10 {
  		n = n / 10
  		tens++
  	}
  	// result = 10^tens
  	result := 1
  	for i := 0; i < tens; i++ {
  		result *= 10
  	}
  	return result
  }
  
  // roundUp rounds x up to a number of the form [1eX, 2eX, 3eX, 5eX].
  func roundUp(n int) int {
  	base := roundDown10(n)
  	switch {
  	case n <= base:
  		return base
  	case n <= (2 * base):
  		return 2 * base
  	case n <= (3 * base):
  		return 3 * base
  	case n <= (5 * base):
  		return 5 * base
  	default:
  		return 10 * base
  	}
  }
  
  // run1 runs the first iteration of benchFunc. It returns whether more
  // iterations of this benchmarks should be run.
  func (b *B) run1() bool {
  	if ctx := b.context; ctx != nil {
  		// Extend maxLen, if needed.
  		if n := len(b.name) + ctx.extLen + 1; n > ctx.maxLen {
  			ctx.maxLen = n + 8 // Add additional slack to avoid too many jumps in size.
  		}
  	}
  	go func() {
  		// Signal that we're done whether we return normally
  		// or by FailNow's runtime.Goexit.
  		defer func() {
  			b.signal <- true
  		}()
  
  		b.runN(1)
  	}()
  	<-b.signal
  	if b.failed {
  		fmt.Fprintf(b.w, "--- FAIL: %s\n%s", b.name, b.output)
  		return false
  	}
  	// Only print the output if we know we are not going to proceed.
  	// Otherwise it is printed in processBench.
  	if atomic.LoadInt32(&b.hasSub) != 0 || b.finished {
  		tag := "BENCH"
  		if b.skipped {
  			tag = "SKIP"
  		}
  		if b.chatty && (len(b.output) > 0 || b.finished) {
  			b.trimOutput()
  			fmt.Fprintf(b.w, "--- %s: %s\n%s", tag, b.name, b.output)
  		}
  		return false
  	}
  	return true
  }
  
  // run executes the benchmark in a separate goroutine, including all of its
  // subbenchmarks. b must not have subbenchmarks.
  func (b *B) run() BenchmarkResult {
  	if b.context != nil {
  		// Running go test --test.bench
  		b.context.processBench(b) // Must call doBench.
  	} else {
  		// Running func Benchmark.
  		b.doBench()
  	}
  	return b.result
  }
  
  func (b *B) doBench() BenchmarkResult {
  	go b.launch()
  	<-b.signal
  	return b.result
  }
  
  // launch launches the benchmark function. It gradually increases the number
  // of benchmark iterations until the benchmark runs for the requested benchtime.
  // launch is run by the doBench function as a separate goroutine.
  // run1 must have been called on b.
  func (b *B) launch() {
  	// Signal that we're done whether we return normally
  	// or by FailNow's runtime.Goexit.
  	defer func() {
  		b.signal <- true
  	}()
  
  	// Run the benchmark for at least the specified amount of time.
  	d := b.benchTime
  	for n := 1; !b.failed && b.duration < d && n < 1e9; {
  		last := n
  		// Predict required iterations.
  		n = int(d.Nanoseconds())
  		if nsop := b.nsPerOp(); nsop != 0 {
  			n /= int(nsop)
  		}
  		// Run more iterations than we think we'll need (1.2x).
  		// Don't grow too fast in case we had timing errors previously.
  		// Be sure to run at least one more than last time.
  		n = max(min(n+n/5, 100*last), last+1)
  		// Round up to something easy to read.
  		n = roundUp(n)
  		b.runN(n)
  	}
  	b.result = BenchmarkResult{b.N, b.duration, b.bytes, b.netAllocs, b.netBytes}
  }
  
  // The results of a benchmark run.
  type BenchmarkResult struct {
  	N         int           // The number of iterations.
  	T         time.Duration // The total time taken.
  	Bytes     int64         // Bytes processed in one iteration.
  	MemAllocs uint64        // The total number of memory allocations.
  	MemBytes  uint64        // The total number of bytes allocated.
  }
  
  func (r BenchmarkResult) NsPerOp() int64 {
  	if r.N <= 0 {
  		return 0
  	}
  	return r.T.Nanoseconds() / int64(r.N)
  }
  
  func (r BenchmarkResult) mbPerSec() float64 {
  	if r.Bytes <= 0 || r.T <= 0 || r.N <= 0 {
  		return 0
  	}
  	return (float64(r.Bytes) * float64(r.N) / 1e6) / r.T.Seconds()
  }
  
  func (r BenchmarkResult) AllocsPerOp() int64 {
  	if r.N <= 0 {
  		return 0
  	}
  	return int64(r.MemAllocs) / int64(r.N)
  }
  
  func (r BenchmarkResult) AllocedBytesPerOp() int64 {
  	if r.N <= 0 {
  		return 0
  	}
  	return int64(r.MemBytes) / int64(r.N)
  }
  
  func (r BenchmarkResult) String() string {
  	mbs := r.mbPerSec()
  	mb := ""
  	if mbs != 0 {
  		mb = fmt.Sprintf("\t%7.2f MB/s", mbs)
  	}
  	nsop := r.NsPerOp()
  	ns := fmt.Sprintf("%10d ns/op", nsop)
  	if r.N > 0 && nsop < 100 {
  		// The format specifiers here make sure that
  		// the ones digits line up for all three possible formats.
  		if nsop < 10 {
  			ns = fmt.Sprintf("%13.2f ns/op", float64(r.T.Nanoseconds())/float64(r.N))
  		} else {
  			ns = fmt.Sprintf("%12.1f ns/op", float64(r.T.Nanoseconds())/float64(r.N))
  		}
  	}
  	return fmt.Sprintf("%8d\t%s%s", r.N, ns, mb)
  }
  
  func (r BenchmarkResult) MemString() string {
  	return fmt.Sprintf("%8d B/op\t%8d allocs/op",
  		r.AllocedBytesPerOp(), r.AllocsPerOp())
  }
  
  // benchmarkName returns full name of benchmark including procs suffix.
  func benchmarkName(name string, n int) string {
  	if n != 1 {
  		return fmt.Sprintf("%s-%d", name, n)
  	}
  	return name
  }
  
  type benchContext struct {
  	match *matcher
  
  	maxLen int // The largest recorded benchmark name.
  	extLen int // Maximum extension length.
  }
  
  // An internal function but exported because it is cross-package; part of the implementation
  // of the "go test" command.
  func RunBenchmarks(matchString func(pat, str string) (bool, error), benchmarks []InternalBenchmark) {
  	runBenchmarks(matchString, benchmarks)
  }
  
  func runBenchmarks(matchString func(pat, str string) (bool, error), benchmarks []InternalBenchmark) bool {
  	// If no flag was specified, don't run benchmarks.
  	if len(*matchBenchmarks) == 0 {
  		return true
  	}
  	// Collect matching benchmarks and determine longest name.
  	maxprocs := 1
  	for _, procs := range cpuList {
  		if procs > maxprocs {
  			maxprocs = procs
  		}
  	}
  	ctx := &benchContext{
  		match:  newMatcher(matchString, *matchBenchmarks, "-test.bench"),
  		extLen: len(benchmarkName("", maxprocs)),
  	}
  	var bs []InternalBenchmark
  	for _, Benchmark := range benchmarks {
  		if _, matched := ctx.match.fullName(nil, Benchmark.Name); matched {
  			bs = append(bs, Benchmark)
  			benchName := benchmarkName(Benchmark.Name, maxprocs)
  			if l := len(benchName) + ctx.extLen + 1; l > ctx.maxLen {
  				ctx.maxLen = l
  			}
  		}
  	}
  	main := &B{
  		common: common{
  			name:   "Main",
  			w:      os.Stdout,
  			chatty: *chatty,
  		},
  		benchFunc: func(b *B) {
  			for _, Benchmark := range bs {
  				b.Run(Benchmark.Name, Benchmark.F)
  			}
  		},
  		benchTime: *benchTime,
  		context:   ctx,
  	}
  	main.runN(1)
  	return !main.failed
  }
  
  // processBench runs bench b for the configured CPU counts and prints the results.
  func (ctx *benchContext) processBench(b *B) {
  	for i, procs := range cpuList {
  		runtime.GOMAXPROCS(procs)
  		benchName := benchmarkName(b.name, procs)
  		fmt.Fprintf(b.w, "%-*s\t", ctx.maxLen, benchName)
  		// Recompute the running time for all but the first iteration.
  		if i > 0 {
  			b = &B{
  				common: common{
  					signal: make(chan bool),
  					name:   b.name,
  					w:      b.w,
  					chatty: b.chatty,
  				},
  				benchFunc: b.benchFunc,
  				benchTime: b.benchTime,
  			}
  			b.run1()
  		}
  		r := b.doBench()
  		if b.failed {
  			// The output could be very long here, but probably isn't.
  			// We print it all, regardless, because we don't want to trim the reason
  			// the benchmark failed.
  			fmt.Fprintf(b.w, "--- FAIL: %s\n%s", benchName, b.output)
  			continue
  		}
  		results := r.String()
  		if *benchmarkMemory || b.showAllocResult {
  			results += "\t" + r.MemString()
  		}
  		fmt.Fprintln(b.w, results)
  		// Unlike with tests, we ignore the -chatty flag and always print output for
  		// benchmarks since the output generation time will skew the results.
  		if len(b.output) > 0 {
  			b.trimOutput()
  			fmt.Fprintf(b.w, "--- BENCH: %s\n%s", benchName, b.output)
  		}
  		if p := runtime.GOMAXPROCS(-1); p != procs {
  			fmt.Fprintf(os.Stderr, "testing: %s left GOMAXPROCS set to %d\n", benchName, p)
  		}
  	}
  }
  
  // Run benchmarks f as a subbenchmark with the given name. It reports
  // whether there were any failures.
  //
  // A subbenchmark is like any other benchmark. A benchmark that calls Run at
  // least once will not be measured itself and will be called once with N=1.
  //
  // Run may be called simultaneously from multiple goroutines, but all such
  // calls must happen before the outer benchmark function for b returns.
  func (b *B) Run(name string, f func(b *B)) bool {
  	// Since b has subbenchmarks, we will no longer run it as a benchmark itself.
  	// Release the lock and acquire it on exit to ensure locks stay paired.
  	atomic.StoreInt32(&b.hasSub, 1)
  	benchmarkLock.Unlock()
  	defer benchmarkLock.Lock()
  
  	benchName, ok := b.name, true
  	if b.context != nil {
  		benchName, ok = b.context.match.fullName(&b.common, name)
  	}
  	if !ok {
  		return true
  	}
  	sub := &B{
  		common: common{
  			signal: make(chan bool),
  			name:   benchName,
  			parent: &b.common,
  			level:  b.level + 1,
  			w:      b.w,
  			chatty: b.chatty,
  		},
  		benchFunc: f,
  		benchTime: b.benchTime,
  		context:   b.context,
  	}
  	if sub.run1() {
  		sub.run()
  	}
  	b.add(sub.result)
  	return !sub.failed
  }
  
  // add simulates running benchmarks in sequence in a single iteration. It is
  // used to give some meaningful results in case func Benchmark is used in
  // combination with Run.
  func (b *B) add(other BenchmarkResult) {
  	r := &b.result
  	// The aggregated BenchmarkResults resemble running all subbenchmarks as
  	// in sequence in a single benchmark.
  	r.N = 1
  	r.T += time.Duration(other.NsPerOp())
  	if other.Bytes == 0 {
  		// Summing Bytes is meaningless in aggregate if not all subbenchmarks
  		// set it.
  		b.missingBytes = true
  		r.Bytes = 0
  	}
  	if !b.missingBytes {
  		r.Bytes += other.Bytes
  	}
  	r.MemAllocs += uint64(other.AllocsPerOp())
  	r.MemBytes += uint64(other.AllocedBytesPerOp())
  }
  
  // trimOutput shortens the output from a benchmark, which can be very long.
  func (b *B) trimOutput() {
  	// The output is likely to appear multiple times because the benchmark
  	// is run multiple times, but at least it will be seen. This is not a big deal
  	// because benchmarks rarely print, but just in case, we trim it if it's too long.
  	const maxNewlines = 10
  	for nlCount, j := 0, 0; j < len(b.output); j++ {
  		if b.output[j] == '\n' {
  			nlCount++
  			if nlCount >= maxNewlines {
  				b.output = append(b.output[:j], "\n\t... [output truncated]\n"...)
  				break
  			}
  		}
  	}
  }
  
  // A PB is used by RunParallel for running parallel benchmarks.
  type PB struct {
  	globalN *uint64 // shared between all worker goroutines iteration counter
  	grain   uint64  // acquire that many iterations from globalN at once
  	cache   uint64  // local cache of acquired iterations
  	bN      uint64  // total number of iterations to execute (b.N)
  }
  
  // Next reports whether there are more iterations to execute.
  func (pb *PB) Next() bool {
  	if pb.cache == 0 {
  		n := atomic.AddUint64(pb.globalN, pb.grain)
  		if n <= pb.bN {
  			pb.cache = pb.grain
  		} else if n < pb.bN+pb.grain {
  			pb.cache = pb.bN + pb.grain - n
  		} else {
  			return false
  		}
  	}
  	pb.cache--
  	return true
  }
  
  // RunParallel runs a benchmark in parallel.
  // It creates multiple goroutines and distributes b.N iterations among them.
  // The number of goroutines defaults to GOMAXPROCS. To increase parallelism for
  // non-CPU-bound benchmarks, call SetParallelism before RunParallel.
  // RunParallel is usually used with the go test -cpu flag.
  //
  // The body function will be run in each goroutine. It should set up any
  // goroutine-local state and then iterate until pb.Next returns false.
  // It should not use the StartTimer, StopTimer, or ResetTimer functions,
  // because they have global effect. It should also not call Run.
  func (b *B) RunParallel(body func(*PB)) {
  	if b.N == 0 {
  		return // Nothing to do when probing.
  	}
  	// Calculate grain size as number of iterations that take ~100µs.
  	// 100µs is enough to amortize the overhead and provide sufficient
  	// dynamic load balancing.
  	grain := uint64(0)
  	if b.previousN > 0 && b.previousDuration > 0 {
  		grain = 1e5 * uint64(b.previousN) / uint64(b.previousDuration)
  	}
  	if grain < 1 {
  		grain = 1
  	}
  	// We expect the inner loop and function call to take at least 10ns,
  	// so do not do more than 100µs/10ns=1e4 iterations.
  	if grain > 1e4 {
  		grain = 1e4
  	}
  
  	n := uint64(0)
  	numProcs := b.parallelism * runtime.GOMAXPROCS(0)
  	var wg sync.WaitGroup
  	wg.Add(numProcs)
  	for p := 0; p < numProcs; p++ {
  		go func() {
  			defer wg.Done()
  			pb := &PB{
  				globalN: &n,
  				grain:   grain,
  				bN:      uint64(b.N),
  			}
  			body(pb)
  		}()
  	}
  	wg.Wait()
  	if n <= uint64(b.N) && !b.Failed() {
  		b.Fatal("RunParallel: body exited without pb.Next() == false")
  	}
  }
  
  // SetParallelism sets the number of goroutines used by RunParallel to p*GOMAXPROCS.
  // There is usually no need to call SetParallelism for CPU-bound benchmarks.
  // If p is less than 1, this call will have no effect.
  func (b *B) SetParallelism(p int) {
  	if p >= 1 {
  		b.parallelism = p
  	}
  }
  
  // Benchmark benchmarks a single function. Useful for creating
  // custom benchmarks that do not use the "go test" command.
  //
  // If f calls Run, the result will be an estimate of running all its
  // subbenchmarks that don't call Run in sequence in a single benchmark.
  func Benchmark(f func(b *B)) BenchmarkResult {
  	b := &B{
  		common: common{
  			signal: make(chan bool),
  			w:      discard{},
  		},
  		benchFunc: f,
  		benchTime: *benchTime,
  	}
  	if !b.run1() {
  		return BenchmarkResult{}
  	}
  	return b.run()
  }
  
  type discard struct{}
  
  func (discard) Write(b []byte) (n int, err error) { return len(b), nil }
  

View as plain text