// Copyright 2012 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime_test import ( "flag" "fmt" "io" . "runtime" "runtime/debug" "sort" "strings" "sync" "testing" "time" "unsafe" ) // flagQuick is set by the -quick option to skip some relatively slow tests. // This is used by the cmd/dist test runtime:cpu124. // The cmd/dist test passes both -test.short and -quick; // there are tests that only check testing.Short, and those tests will // not be skipped if only -quick is used. var flagQuick = flag.Bool("quick", false, "skip slow tests, for cmd/dist test runtime:cpu124") func init() { // We're testing the runtime, so make tracebacks show things // in the runtime. This only raises the level, so it won't // override GOTRACEBACK=crash from the user. SetTracebackEnv("system") } var errf error func errfn() error { return errf } func errfn1() error { return io.EOF } func BenchmarkIfaceCmp100(b *testing.B) { for i := 0; i < b.N; i++ { for j := 0; j < 100; j++ { if errfn() == io.EOF { b.Fatal("bad comparison") } } } } func BenchmarkIfaceCmpNil100(b *testing.B) { for i := 0; i < b.N; i++ { for j := 0; j < 100; j++ { if errfn1() == nil { b.Fatal("bad comparison") } } } } var efaceCmp1 any var efaceCmp2 any func BenchmarkEfaceCmpDiff(b *testing.B) { x := 5 efaceCmp1 = &x y := 6 efaceCmp2 = &y for i := 0; i < b.N; i++ { for j := 0; j < 100; j++ { if efaceCmp1 == efaceCmp2 { b.Fatal("bad comparison") } } } } func BenchmarkEfaceCmpDiffIndirect(b *testing.B) { efaceCmp1 = [2]int{1, 2} efaceCmp2 = [2]int{1, 2} for i := 0; i < b.N; i++ { for j := 0; j < 100; j++ { if efaceCmp1 != efaceCmp2 { b.Fatal("bad comparison") } } } } func BenchmarkDefer(b *testing.B) { for i := 0; i < b.N; i++ { defer1() } } func defer1() { defer func(x, y, z int) { if recover() != nil || x != 1 || y != 2 || z != 3 { panic("bad recover") } }(1, 2, 3) } func BenchmarkDefer10(b *testing.B) { for i := 0; i < b.N/10; i++ { defer2() } } func defer2() { for i := 0; i < 10; i++ { defer func(x, y, z int) { if recover() != nil || x != 1 || y != 2 || z != 3 { panic("bad recover") } }(1, 2, 3) } } func BenchmarkDeferMany(b *testing.B) { for i := 0; i < b.N; i++ { defer func(x, y, z int) { if recover() != nil || x != 1 || y != 2 || z != 3 { panic("bad recover") } }(1, 2, 3) } } func BenchmarkPanicRecover(b *testing.B) { for i := 0; i < b.N; i++ { defer3() } } func defer3() { defer func(x, y, z int) { if recover() == nil { panic("failed recover") } }(1, 2, 3) panic("hi") } // golang.org/issue/7063 func TestStopCPUProfilingWithProfilerOff(t *testing.T) { SetCPUProfileRate(0) } // Addresses to test for faulting behavior. // This is less a test of SetPanicOnFault and more a check that // the operating system and the runtime can process these faults // correctly. That is, we're indirectly testing that without SetPanicOnFault // these would manage to turn into ordinary crashes. // Note that these are truncated on 32-bit systems, so the bottom 32 bits // of the larger addresses must themselves be invalid addresses. // We might get unlucky and the OS might have mapped one of these // addresses, but probably not: they're all in the first page, very high // addresses that normally an OS would reserve for itself, or malformed // addresses. Even so, we might have to remove one or two on different // systems. We will see. var faultAddrs = []uint64{ // low addresses 0, 1, 0xfff, // high (kernel) addresses // or else malformed. 0xffffffffffffffff, 0xfffffffffffff001, 0xffffffffffff0001, 0xfffffffffff00001, 0xffffffffff000001, 0xfffffffff0000001, 0xffffffff00000001, 0xfffffff000000001, 0xffffff0000000001, 0xfffff00000000001, 0xffff000000000001, 0xfff0000000000001, 0xff00000000000001, 0xf000000000000001, 0x8000000000000001, } func TestSetPanicOnFault(t *testing.T) { old := debug.SetPanicOnFault(true) defer debug.SetPanicOnFault(old) nfault := 0 for _, addr := range faultAddrs { testSetPanicOnFault(t, uintptr(addr), &nfault) } if nfault == 0 { t.Fatalf("none of the addresses faulted") } } // testSetPanicOnFault tests one potentially faulting address. // It deliberately constructs and uses an invalid pointer, // so mark it as nocheckptr. // //go:nocheckptr func testSetPanicOnFault(t *testing.T, addr uintptr, nfault *int) { if GOOS == "js" || GOOS == "wasip1" { t.Skip(GOOS + " does not support catching faults") } defer func() { if err := recover(); err != nil { *nfault++ } }() // The read should fault, except that sometimes we hit // addresses that have had C or kernel pages mapped there // readable by user code. So just log the content. // If no addresses fault, we'll fail the test. v := *(*byte)(unsafe.Pointer(addr)) t.Logf("addr %#x: %#x\n", addr, v) } func eqstring_generic(s1, s2 string) bool { if len(s1) != len(s2) { return false } // optimization in assembly versions: // if s1.str == s2.str { return true } for i := 0; i < len(s1); i++ { if s1[i] != s2[i] { return false } } return true } func TestEqString(t *testing.T) { // This isn't really an exhaustive test of == on strings, it's // just a convenient way of documenting (via eqstring_generic) // what == does. s := []string{ "", "a", "c", "aaa", "ccc", "cccc"[:3], // same contents, different string "1234567890", } for _, s1 := range s { for _, s2 := range s { x := s1 == s2 y := eqstring_generic(s1, s2) if x != y { t.Errorf(`("%s" == "%s") = %t, want %t`, s1, s2, x, y) } } } } func TestTrailingZero(t *testing.T) { // make sure we add padding for structs with trailing zero-sized fields type T1 struct { n int32 z [0]byte } if unsafe.Sizeof(T1{}) != 8 { t.Errorf("sizeof(%#v)==%d, want 8", T1{}, unsafe.Sizeof(T1{})) } type T2 struct { n int64 z struct{} } if unsafe.Sizeof(T2{}) != 8+unsafe.Sizeof(uintptr(0)) { t.Errorf("sizeof(%#v)==%d, want %d", T2{}, unsafe.Sizeof(T2{}), 8+unsafe.Sizeof(uintptr(0))) } type T3 struct { n byte z [4]struct{} } if unsafe.Sizeof(T3{}) != 2 { t.Errorf("sizeof(%#v)==%d, want 2", T3{}, unsafe.Sizeof(T3{})) } // make sure padding can double for both zerosize and alignment type T4 struct { a int32 b int16 c int8 z struct{} } if unsafe.Sizeof(T4{}) != 8 { t.Errorf("sizeof(%#v)==%d, want 8", T4{}, unsafe.Sizeof(T4{})) } // make sure we don't pad a zero-sized thing type T5 struct { } if unsafe.Sizeof(T5{}) != 0 { t.Errorf("sizeof(%#v)==%d, want 0", T5{}, unsafe.Sizeof(T5{})) } } func TestAppendGrowth(t *testing.T) { var x []int64 check := func(want int) { if cap(x) != want { t.Errorf("len=%d, cap=%d, want cap=%d", len(x), cap(x), want) } } check(0) want := 1 for i := 1; i <= 100; i++ { x = append(x, 1) check(want) if i&(i-1) == 0 { want = 2 * i } } } var One = []int64{1} func TestAppendSliceGrowth(t *testing.T) { var x []int64 check := func(want int) { if cap(x) != want { t.Errorf("len=%d, cap=%d, want cap=%d", len(x), cap(x), want) } } check(0) want := 1 for i := 1; i <= 100; i++ { x = append(x, One...) check(want) if i&(i-1) == 0 { want = 2 * i } } } func TestGoroutineProfileTrivial(t *testing.T) { // Calling GoroutineProfile twice in a row should find the same number of goroutines, // but it's possible there are goroutines just about to exit, so we might end up // with fewer in the second call. Try a few times; it should converge once those // zombies are gone. for i := 0; ; i++ { n1, ok := GoroutineProfile(nil) // should fail, there's at least 1 goroutine if n1 < 1 || ok { t.Fatalf("GoroutineProfile(nil) = %d, %v, want >0, false", n1, ok) } n2, ok := GoroutineProfile(make([]StackRecord, n1)) if n2 == n1 && ok { break } t.Logf("GoroutineProfile(%d) = %d, %v, want %d, true", n1, n2, ok, n1) if i >= 10 { t.Fatalf("GoroutineProfile not converging") } } } func BenchmarkGoroutineProfile(b *testing.B) { run := func(fn func() bool) func(b *testing.B) { runOne := func(b *testing.B) { latencies := make([]time.Duration, 0, b.N) b.ResetTimer() for i := 0; i < b.N; i++ { start := time.Now() ok := fn() if !ok { b.Fatal("goroutine profile failed") } latencies = append(latencies, time.Since(start)) } b.StopTimer() // Sort latencies then report percentiles. sort.Slice(latencies, func(i, j int) bool { return latencies[i] < latencies[j] }) b.ReportMetric(float64(latencies[len(latencies)*50/100]), "p50-ns") b.ReportMetric(float64(latencies[len(latencies)*90/100]), "p90-ns") b.ReportMetric(float64(latencies[len(latencies)*99/100]), "p99-ns") } return func(b *testing.B) { b.Run("idle", runOne) b.Run("loaded", func(b *testing.B) { stop := applyGCLoad(b) runOne(b) // Make sure to stop the timer before we wait! The load created above // is very heavy-weight and not easy to stop, so we could end up // confusing the benchmarking framework for small b.N. b.StopTimer() stop() }) } } // Measure the cost of counting goroutines b.Run("small-nil", run(func() bool { GoroutineProfile(nil) return true })) // Measure the cost with a small set of goroutines n := NumGoroutine() p := make([]StackRecord, 2*n+2*GOMAXPROCS(0)) b.Run("small", run(func() bool { _, ok := GoroutineProfile(p) return ok })) // Measure the cost with a large set of goroutines ch := make(chan int) var ready, done sync.WaitGroup for i := 0; i < 5000; i++ { ready.Add(1) done.Add(1) go func() { ready.Done(); <-ch; done.Done() }() } ready.Wait() // Count goroutines with a large allgs list b.Run("large-nil", run(func() bool { GoroutineProfile(nil) return true })) n = NumGoroutine() p = make([]StackRecord, 2*n+2*GOMAXPROCS(0)) b.Run("large", run(func() bool { _, ok := GoroutineProfile(p) return ok })) close(ch) done.Wait() // Count goroutines with a large (but unused) allgs list b.Run("sparse-nil", run(func() bool { GoroutineProfile(nil) return true })) // Measure the cost of a large (but unused) allgs list n = NumGoroutine() p = make([]StackRecord, 2*n+2*GOMAXPROCS(0)) b.Run("sparse", run(func() bool { _, ok := GoroutineProfile(p) return ok })) } func TestVersion(t *testing.T) { // Test that version does not contain \r or \n. vers := Version() if strings.Contains(vers, "\r") || strings.Contains(vers, "\n") { t.Fatalf("cr/nl in version: %q", vers) } } func TestTimediv(t *testing.T) { for _, tc := range []struct { num int64 div int32 ret int32 rem int32 }{ { num: 8, div: 2, ret: 4, rem: 0, }, { num: 9, div: 2, ret: 4, rem: 1, }, { // Used by runtime.check. num: 12345*1000000000 + 54321, div: 1000000000, ret: 12345, rem: 54321, }, { num: 1<<32 - 1, div: 2, ret: 1<<31 - 1, // no overflow. rem: 1, }, { num: 1 << 32, div: 2, ret: 1<<31 - 1, // overflow. rem: 0, }, { num: 1 << 40, div: 2, ret: 1<<31 - 1, // overflow. rem: 0, }, { num: 1<<40 + 1, div: 1 << 10, ret: 1 << 30, rem: 1, }, } { name := fmt.Sprintf("%d div %d", tc.num, tc.div) t.Run(name, func(t *testing.T) { // Double check that the inputs make sense using // standard 64-bit division. ret64 := tc.num / int64(tc.div) rem64 := tc.num % int64(tc.div) if ret64 != int64(int32(ret64)) { // Simulate timediv overflow value. ret64 = 1<<31 - 1 rem64 = 0 } if ret64 != int64(tc.ret) { t.Errorf("%d / %d got ret %d rem %d want ret %d rem %d", tc.num, tc.div, ret64, rem64, tc.ret, tc.rem) } var rem int32 ret := Timediv(tc.num, tc.div, &rem) if ret != tc.ret || rem != tc.rem { t.Errorf("timediv %d / %d got ret %d rem %d want ret %d rem %d", tc.num, tc.div, ret, rem, tc.ret, tc.rem) } }) } }