Run Format

Source file src/runtime/mgcsweepbuf.go

Documentation: runtime

  // Copyright 2016 The Go Authors. All rights reserved.
  // Use of this source code is governed by a BSD-style
  // license that can be found in the LICENSE file.
  package runtime
  import (
  // A gcSweepBuf is a set of *mspans.
  // gcSweepBuf is safe for concurrent push operations *or* concurrent
  // pop operations, but not both simultaneously.
  type gcSweepBuf struct {
  	// A gcSweepBuf is a two-level data structure consisting of a
  	// growable spine that points to fixed-sized blocks. The spine
  	// can be accessed without locks, but adding a block or
  	// growing it requires taking the spine lock.
  	// Because each mspan covers at least 8K of heap and takes at
  	// most 8 bytes in the gcSweepBuf, the growth of the spine is
  	// quite limited.
  	// The spine and all blocks are allocated off-heap, which
  	// allows this to be used in the memory manager and avoids the
  	// need for write barriers on all of these. We never release
  	// this memory because there could be concurrent lock-free
  	// access and we're likely to reuse it anyway. (In principle,
  	// we could do this during STW.)
  	spineLock mutex
  	spine     unsafe.Pointer // *[N]*gcSweepBlock, accessed atomically
  	spineLen  uintptr        // Spine array length, accessed atomically
  	spineCap  uintptr        // Spine array cap, accessed under lock
  	// index is the first unused slot in the logical concatenation
  	// of all blocks. It is accessed atomically.
  	index uint32
  const (
  	gcSweepBlockEntries    = 512 // 4KB on 64-bit
  	gcSweepBufInitSpineCap = 256 // Enough for 1GB heap on 64-bit
  type gcSweepBlock struct {
  	spans [gcSweepBlockEntries]*mspan
  // push adds span s to buffer b. push is safe to call concurrently
  // with other push operations, but NOT to call concurrently with pop.
  func (b *gcSweepBuf) push(s *mspan) {
  	// Obtain our slot.
  	cursor := uintptr(atomic.Xadd(&b.index, +1) - 1)
  	top, bottom := cursor/gcSweepBlockEntries, cursor%gcSweepBlockEntries
  	// Do we need to add a block?
  	spineLen := atomic.Loaduintptr(&b.spineLen)
  	var block *gcSweepBlock
  	if top < spineLen {
  		spine := atomic.Loadp(unsafe.Pointer(&b.spine))
  		blockp := add(spine, sys.PtrSize*top)
  		block = (*gcSweepBlock)(atomic.Loadp(blockp))
  	} else {
  		// Add a new block to the spine, potentially growing
  		// the spine.
  		// spineLen cannot change until we release the lock,
  		// but may have changed while we were waiting.
  		spineLen = atomic.Loaduintptr(&b.spineLen)
  		if top < spineLen {
  			goto retry
  		if spineLen == b.spineCap {
  			// Grow the spine.
  			newCap := b.spineCap * 2
  			if newCap == 0 {
  				newCap = gcSweepBufInitSpineCap
  			newSpine := persistentalloc(newCap*sys.PtrSize, sys.CacheLineSize, &memstats.gc_sys)
  			if b.spineCap != 0 {
  				// Blocks are allocated off-heap, so
  				// no write barriers.
  				memmove(newSpine, b.spine, b.spineCap*sys.PtrSize)
  			// Spine is allocated off-heap, so no write barrier.
  			atomic.StorepNoWB(unsafe.Pointer(&b.spine), newSpine)
  			b.spineCap = newCap
  			// We can't immediately free the old spine
  			// since a concurrent push with a lower index
  			// could still be reading from it. We let it
  			// leak because even a 1TB heap would waste
  			// less than 2MB of memory on old spines. If
  			// this is a problem, we could free old spines
  			// during STW.
  		// Allocate a new block and add it to the spine.
  		block = (*gcSweepBlock)(persistentalloc(unsafe.Sizeof(gcSweepBlock{}), sys.CacheLineSize, &memstats.gc_sys))
  		blockp := add(b.spine, sys.PtrSize*top)
  		// Blocks are allocated off-heap, so no write barrier.
  		atomic.StorepNoWB(blockp, unsafe.Pointer(block))
  		atomic.Storeuintptr(&b.spineLen, spineLen+1)
  	// We have a block. Insert the span.
  	block.spans[bottom] = s
  // pop removes and returns a span from buffer b, or nil if b is empty.
  // pop is safe to call concurrently with other pop operations, but NOT
  // to call concurrently with push.
  func (b *gcSweepBuf) pop() *mspan {
  	cursor := atomic.Xadd(&b.index, -1)
  	if int32(cursor) < 0 {
  		atomic.Xadd(&b.index, +1)
  		return nil
  	// There are no concurrent spine or block modifications during
  	// pop, so we can omit the atomics.
  	top, bottom := cursor/gcSweepBlockEntries, cursor%gcSweepBlockEntries
  	blockp := (**gcSweepBlock)(add(b.spine, sys.PtrSize*uintptr(top)))
  	block := *blockp
  	s := block.spans[bottom]
  	// Clear the pointer for block(i).
  	block.spans[bottom] = nil
  	return s
  // numBlocks returns the number of blocks in buffer b. numBlocks is
  // safe to call concurrently with any other operation. Spans that have
  // been pushed prior to the call to numBlocks are guaranteed to appear
  // in some block in the range [0, numBlocks()), assuming there are no
  // intervening pops. Spans that are pushed after the call may also
  // appear in these blocks.
  func (b *gcSweepBuf) numBlocks() int {
  	return int((atomic.Load(&b.index) + gcSweepBlockEntries - 1) / gcSweepBlockEntries)
  // block returns the spans in the i'th block of buffer b. block is
  // safe to call concurrently with push.
  func (b *gcSweepBuf) block(i int) []*mspan {
  	// Perform bounds check before loading spine address since
  	// push ensures the allocated length is at least spineLen.
  	if i < 0 || uintptr(i) >= atomic.Loaduintptr(&b.spineLen) {
  		throw("block index out of range")
  	// Get block i.
  	spine := atomic.Loadp(unsafe.Pointer(&b.spine))
  	blockp := add(spine, sys.PtrSize*uintptr(i))
  	block := (*gcSweepBlock)(atomic.Loadp(blockp))
  	// Slice the block if necessary.
  	cursor := uintptr(atomic.Load(&b.index))
  	top, bottom := cursor/gcSweepBlockEntries, cursor%gcSweepBlockEntries
  	var spans []*mspan
  	if uintptr(i) < top {
  		spans = block.spans[:]
  	} else {
  		spans = block.spans[:bottom]
  	// push may have reserved a slot but not filled it yet, so
  	// trim away unused entries.
  	for len(spans) > 0 && spans[len(spans)-1] == nil {
  		spans = spans[:len(spans)-1]
  	return spans

View as plain text