// Inferno's libkern/memmove-386.s // https://bitbucket.org/inferno-os/inferno-os/src/master/libkern/memmove-386.s // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Revisions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com). All rights reserved. // Portions Copyright 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. #include "textflag.h" // See memmove Go doc for important implementation constraints. // func memmove(to, from unsafe.Pointer, n uintptr) TEXT runtime·memmove(SB), NOSPLIT, $0-12 MOVL to+0(FP), DI MOVL from+4(FP), SI MOVL n+8(FP), BX // REP instructions have a high startup cost, so we handle small sizes // with some straightline code. The REP MOVSL instruction is really fast // for large sizes. The cutover is approximately 1K. tail: TESTL BX, BX JEQ move_0 CMPL BX, $2 JBE move_1or2 CMPL BX, $4 JB move_3 JE move_4 CMPL BX, $8 JBE move_5through8 CMPL BX, $16 JBE move_9through16 /* * check and set for backwards */ CMPL SI, DI JLS back /* * forward copy loop */ forward: MOVL BX, CX SHRL $2, CX ANDL $3, BX REP; MOVSL JMP tail /* * check overlap */ back: MOVL SI, CX ADDL BX, CX CMPL CX, DI JLS forward /* * whole thing backwards has * adjusted addresses */ ADDL BX, DI ADDL BX, SI STD /* * copy */ MOVL BX, CX SHRL $2, CX ANDL $3, BX SUBL $4, DI SUBL $4, SI REP; MOVSL CLD ADDL $4, DI ADDL $4, SI SUBL BX, DI SUBL BX, SI JMP tail move_1or2: MOVB (SI), AX MOVB -1(SI)(BX*1), CX MOVB AX, (DI) MOVB CX, -1(DI)(BX*1) RET move_0: RET move_3: MOVW (SI), AX MOVB 2(SI), CX MOVW AX, (DI) MOVB CX, 2(DI) RET move_4: // We need a separate case for 4 to make sure we write pointers atomically. MOVL (SI), AX MOVL AX, (DI) RET move_5through8: MOVL (SI), AX MOVL -4(SI)(BX*1), CX MOVL AX, (DI) MOVL CX, -4(DI)(BX*1) RET move_9through16: MOVL (SI), AX MOVL 4(SI), CX MOVL -8(SI)(BX*1), DX MOVL -4(SI)(BX*1), BP MOVL AX, (DI) MOVL CX, 4(DI) MOVL DX, -8(DI)(BX*1) MOVL BP, -4(DI)(BX*1) RET