// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime_test import ( "fmt" "internal/goexperiment" "math/rand" "os" "reflect" "runtime" "runtime/debug" "sort" "strings" "sync" "sync/atomic" "testing" "time" "unsafe" ) func TestGcSys(t *testing.T) { t.Skip("skipping known-flaky test; golang.org/issue/37331") if os.Getenv("GOGC") == "off" { t.Skip("skipping test; GOGC=off in environment") } got := runTestProg(t, "testprog", "GCSys") want := "OK\n" if got != want { t.Fatalf("expected %q, but got %q", want, got) } } func TestGcDeepNesting(t *testing.T) { type T [2][2][2][2][2][2][2][2][2][2]*int a := new(T) // Prevent the compiler from applying escape analysis. // This makes sure new(T) is allocated on heap, not on the stack. t.Logf("%p", a) a[0][0][0][0][0][0][0][0][0][0] = new(int) *a[0][0][0][0][0][0][0][0][0][0] = 13 runtime.GC() if *a[0][0][0][0][0][0][0][0][0][0] != 13 { t.Fail() } } func TestGcMapIndirection(t *testing.T) { defer debug.SetGCPercent(debug.SetGCPercent(1)) runtime.GC() type T struct { a [256]int } m := make(map[T]T) for i := 0; i < 2000; i++ { var a T a.a[0] = i m[a] = T{} } } func TestGcArraySlice(t *testing.T) { type X struct { buf [1]byte nextbuf []byte next *X } var head *X for i := 0; i < 10; i++ { p := &X{} p.buf[0] = 42 p.next = head if head != nil { p.nextbuf = head.buf[:] } head = p runtime.GC() } for p := head; p != nil; p = p.next { if p.buf[0] != 42 { t.Fatal("corrupted heap") } } } func TestGcRescan(t *testing.T) { type X struct { c chan error nextx *X } type Y struct { X nexty *Y p *int } var head *Y for i := 0; i < 10; i++ { p := &Y{} p.c = make(chan error) if head != nil { p.nextx = &head.X } p.nexty = head p.p = new(int) *p.p = 42 head = p runtime.GC() } for p := head; p != nil; p = p.nexty { if *p.p != 42 { t.Fatal("corrupted heap") } } } func TestGcLastTime(t *testing.T) { ms := new(runtime.MemStats) t0 := time.Now().UnixNano() runtime.GC() t1 := time.Now().UnixNano() runtime.ReadMemStats(ms) last := int64(ms.LastGC) if t0 > last || last > t1 { t.Fatalf("bad last GC time: got %v, want [%v, %v]", last, t0, t1) } pause := ms.PauseNs[(ms.NumGC+255)%256] // Due to timer granularity, pause can actually be 0 on windows // or on virtualized environments. if pause == 0 { t.Logf("last GC pause was 0") } else if pause > 10e9 { t.Logf("bad last GC pause: got %v, want [0, 10e9]", pause) } } var hugeSink any func TestHugeGCInfo(t *testing.T) { // The test ensures that compiler can chew these huge types even on weakest machines. // The types are not allocated at runtime. if hugeSink != nil { // 400MB on 32 bots, 4TB on 64-bits. const n = (400 << 20) + (unsafe.Sizeof(uintptr(0))-4)<<40 hugeSink = new([n]*byte) hugeSink = new([n]uintptr) hugeSink = new(struct { x float64 y [n]*byte z []string }) hugeSink = new(struct { x float64 y [n]uintptr z []string }) } } func TestPeriodicGC(t *testing.T) { if runtime.GOARCH == "wasm" { t.Skip("no sysmon on wasm yet") } // Make sure we're not in the middle of a GC. runtime.GC() var ms1, ms2 runtime.MemStats runtime.ReadMemStats(&ms1) // Make periodic GC run continuously. orig := *runtime.ForceGCPeriod *runtime.ForceGCPeriod = 0 // Let some periodic GCs happen. In a heavily loaded system, // it's possible these will be delayed, so this is designed to // succeed quickly if things are working, but to give it some // slack if things are slow. var numGCs uint32 const want = 2 for i := 0; i < 200 && numGCs < want; i++ { time.Sleep(5 * time.Millisecond) // Test that periodic GC actually happened. runtime.ReadMemStats(&ms2) numGCs = ms2.NumGC - ms1.NumGC } *runtime.ForceGCPeriod = orig if numGCs < want { t.Fatalf("no periodic GC: got %v GCs, want >= 2", numGCs) } } func TestGcZombieReporting(t *testing.T) { // This test is somewhat sensitive to how the allocator works. // Pointers in zombies slice may cross-span, thus we // add invalidptr=0 for avoiding the badPointer check. // See issue https://golang.org/issues/49613/ got := runTestProg(t, "testprog", "GCZombie", "GODEBUG=invalidptr=0") want := "found pointer to free object" if !strings.Contains(got, want) { t.Fatalf("expected %q in output, but got %q", want, got) } } func TestGCTestMoveStackOnNextCall(t *testing.T) { t.Parallel() var onStack int // GCTestMoveStackOnNextCall can fail in rare cases if there's // a preemption. This won't happen many times in quick // succession, so just retry a few times. for retry := 0; retry < 5; retry++ { runtime.GCTestMoveStackOnNextCall() if moveStackCheck(t, &onStack, uintptr(unsafe.Pointer(&onStack))) { // Passed. return } } t.Fatal("stack did not move") } // This must not be inlined because the point is to force a stack // growth check and move the stack. // //go:noinline func moveStackCheck(t *testing.T, new *int, old uintptr) bool { // new should have been updated by the stack move; // old should not have. // Capture new's value before doing anything that could // further move the stack. new2 := uintptr(unsafe.Pointer(new)) t.Logf("old stack pointer %x, new stack pointer %x", old, new2) if new2 == old { // Check that we didn't screw up the test's escape analysis. if cls := runtime.GCTestPointerClass(unsafe.Pointer(new)); cls != "stack" { t.Fatalf("test bug: new (%#x) should be a stack pointer, not %s", new2, cls) } // This was a real failure. return false } return true } func TestGCTestMoveStackRepeatedly(t *testing.T) { // Move the stack repeatedly to make sure we're not doubling // it each time. for i := 0; i < 100; i++ { runtime.GCTestMoveStackOnNextCall() moveStack1(false) } } //go:noinline func moveStack1(x bool) { // Make sure this function doesn't get auto-nosplit. if x { println("x") } } func TestGCTestIsReachable(t *testing.T) { var all, half []unsafe.Pointer var want uint64 for i := 0; i < 16; i++ { // The tiny allocator muddies things, so we use a // scannable type. p := unsafe.Pointer(new(*int)) all = append(all, p) if i%2 == 0 { half = append(half, p) want |= 1 << i } } got := runtime.GCTestIsReachable(all...) if want != got { t.Fatalf("did not get expected reachable set; want %b, got %b", want, got) } runtime.KeepAlive(half) } var pointerClassBSS *int var pointerClassData = 42 func TestGCTestPointerClass(t *testing.T) { t.Parallel() check := func(p unsafe.Pointer, want string) { t.Helper() got := runtime.GCTestPointerClass(p) if got != want { // Convert the pointer to a uintptr to avoid // escaping it. t.Errorf("for %#x, want class %s, got %s", uintptr(p), want, got) } } var onStack int var notOnStack int check(unsafe.Pointer(&onStack), "stack") check(unsafe.Pointer(runtime.Escape(¬OnStack)), "heap") check(unsafe.Pointer(&pointerClassBSS), "bss") check(unsafe.Pointer(&pointerClassData), "data") check(nil, "other") } func BenchmarkSetTypePtr(b *testing.B) { benchSetType[*byte](b) } func BenchmarkSetTypePtr8(b *testing.B) { benchSetType[[8]*byte](b) } func BenchmarkSetTypePtr16(b *testing.B) { benchSetType[[16]*byte](b) } func BenchmarkSetTypePtr32(b *testing.B) { benchSetType[[32]*byte](b) } func BenchmarkSetTypePtr64(b *testing.B) { benchSetType[[64]*byte](b) } func BenchmarkSetTypePtr126(b *testing.B) { benchSetType[[126]*byte](b) } func BenchmarkSetTypePtr128(b *testing.B) { benchSetType[[128]*byte](b) } func BenchmarkSetTypePtrSlice(b *testing.B) { benchSetTypeSlice[*byte](b, 1<<10) } type Node1 struct { Value [1]uintptr Left, Right *byte } func BenchmarkSetTypeNode1(b *testing.B) { benchSetType[Node1](b) } func BenchmarkSetTypeNode1Slice(b *testing.B) { benchSetTypeSlice[Node1](b, 32) } type Node8 struct { Value [8]uintptr Left, Right *byte } func BenchmarkSetTypeNode8(b *testing.B) { benchSetType[Node8](b) } func BenchmarkSetTypeNode8Slice(b *testing.B) { benchSetTypeSlice[Node8](b, 32) } type Node64 struct { Value [64]uintptr Left, Right *byte } func BenchmarkSetTypeNode64(b *testing.B) { benchSetType[Node64](b) } func BenchmarkSetTypeNode64Slice(b *testing.B) { benchSetTypeSlice[Node64](b, 32) } type Node64Dead struct { Left, Right *byte Value [64]uintptr } func BenchmarkSetTypeNode64Dead(b *testing.B) { benchSetType[Node64Dead](b) } func BenchmarkSetTypeNode64DeadSlice(b *testing.B) { benchSetTypeSlice[Node64Dead](b, 32) } type Node124 struct { Value [124]uintptr Left, Right *byte } func BenchmarkSetTypeNode124(b *testing.B) { benchSetType[Node124](b) } func BenchmarkSetTypeNode124Slice(b *testing.B) { benchSetTypeSlice[Node124](b, 32) } type Node126 struct { Value [126]uintptr Left, Right *byte } func BenchmarkSetTypeNode126(b *testing.B) { benchSetType[Node126](b) } func BenchmarkSetTypeNode126Slice(b *testing.B) { benchSetTypeSlice[Node126](b, 32) } type Node128 struct { Value [128]uintptr Left, Right *byte } func BenchmarkSetTypeNode128(b *testing.B) { benchSetType[Node128](b) } func BenchmarkSetTypeNode128Slice(b *testing.B) { benchSetTypeSlice[Node128](b, 32) } type Node130 struct { Value [130]uintptr Left, Right *byte } func BenchmarkSetTypeNode130(b *testing.B) { benchSetType[Node130](b) } func BenchmarkSetTypeNode130Slice(b *testing.B) { benchSetTypeSlice[Node130](b, 32) } type Node1024 struct { Value [1024]uintptr Left, Right *byte } func BenchmarkSetTypeNode1024(b *testing.B) { benchSetType[Node1024](b) } func BenchmarkSetTypeNode1024Slice(b *testing.B) { benchSetTypeSlice[Node1024](b, 32) } func benchSetType[T any](b *testing.B) { if goexperiment.AllocHeaders { b.Skip("not supported with allocation headers experiment") } b.SetBytes(int64(unsafe.Sizeof(*new(T)))) runtime.BenchSetType[T](b.N, b.ResetTimer) } func benchSetTypeSlice[T any](b *testing.B, len int) { if goexperiment.AllocHeaders { b.Skip("not supported with allocation headers experiment") } b.SetBytes(int64(unsafe.Sizeof(*new(T)) * uintptr(len))) runtime.BenchSetTypeSlice[T](b.N, b.ResetTimer, len) } func BenchmarkAllocation(b *testing.B) { type T struct { x, y *byte } ngo := runtime.GOMAXPROCS(0) work := make(chan bool, b.N+ngo) result := make(chan *T) for i := 0; i < b.N; i++ { work <- true } for i := 0; i < ngo; i++ { work <- false } for i := 0; i < ngo; i++ { go func() { var x *T for <-work { for i := 0; i < 1000; i++ { x = &T{} } } result <- x }() } for i := 0; i < ngo; i++ { <-result } } func TestPrintGC(t *testing.T) { if testing.Short() { t.Skip("Skipping in short mode") } defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(2)) done := make(chan bool) go func() { for { select { case <-done: return default: runtime.GC() } } }() for i := 0; i < 1e4; i++ { func() { defer print("") }() } close(done) } func testTypeSwitch(x any) error { switch y := x.(type) { case nil: // ok case error: return y } return nil } func testAssert(x any) error { if y, ok := x.(error); ok { return y } return nil } func testAssertVar(x any) error { var y, ok = x.(error) if ok { return y } return nil } var a bool //go:noinline func testIfaceEqual(x any) { if x == "abc" { a = true } } func TestPageAccounting(t *testing.T) { // Grow the heap in small increments. This used to drop the // pages-in-use count below zero because of a rounding // mismatch (golang.org/issue/15022). const blockSize = 64 << 10 blocks := make([]*[blockSize]byte, (64<<20)/blockSize) for i := range blocks { blocks[i] = new([blockSize]byte) } // Check that the running page count matches reality. pagesInUse, counted := runtime.CountPagesInUse() if pagesInUse != counted { t.Fatalf("mheap_.pagesInUse is %d, but direct count is %d", pagesInUse, counted) } } func init() { // Enable ReadMemStats' double-check mode. *runtime.DoubleCheckReadMemStats = true } func TestReadMemStats(t *testing.T) { base, slow := runtime.ReadMemStatsSlow() if base != slow { logDiff(t, "MemStats", reflect.ValueOf(base), reflect.ValueOf(slow)) t.Fatal("memstats mismatch") } } func logDiff(t *testing.T, prefix string, got, want reflect.Value) { typ := got.Type() switch typ.Kind() { case reflect.Array, reflect.Slice: if got.Len() != want.Len() { t.Logf("len(%s): got %v, want %v", prefix, got, want) return } for i := 0; i < got.Len(); i++ { logDiff(t, fmt.Sprintf("%s[%d]", prefix, i), got.Index(i), want.Index(i)) } case reflect.Struct: for i := 0; i < typ.NumField(); i++ { gf, wf := got.Field(i), want.Field(i) logDiff(t, prefix+"."+typ.Field(i).Name, gf, wf) } case reflect.Map: t.Fatal("not implemented: logDiff for map") default: if got.Interface() != want.Interface() { t.Logf("%s: got %v, want %v", prefix, got, want) } } } func BenchmarkReadMemStats(b *testing.B) { var ms runtime.MemStats const heapSize = 100 << 20 x := make([]*[1024]byte, heapSize/1024) for i := range x { x[i] = new([1024]byte) } b.ResetTimer() for i := 0; i < b.N; i++ { runtime.ReadMemStats(&ms) } runtime.KeepAlive(x) } func applyGCLoad(b *testing.B) func() { // We’ll apply load to the runtime with maxProcs-1 goroutines // and use one more to actually benchmark. It doesn't make sense // to try to run this test with only 1 P (that's what // BenchmarkReadMemStats is for). maxProcs := runtime.GOMAXPROCS(-1) if maxProcs == 1 { b.Skip("This benchmark can only be run with GOMAXPROCS > 1") } // Code to build a big tree with lots of pointers. type node struct { children [16]*node } var buildTree func(depth int) *node buildTree = func(depth int) *node { tree := new(node) if depth != 0 { for i := range tree.children { tree.children[i] = buildTree(depth - 1) } } return tree } // Keep the GC busy by continuously generating large trees. done := make(chan struct{}) var wg sync.WaitGroup for i := 0; i < maxProcs-1; i++ { wg.Add(1) go func() { defer wg.Done() var hold *node loop: for { hold = buildTree(5) select { case <-done: break loop default: } } runtime.KeepAlive(hold) }() } return func() { close(done) wg.Wait() } } func BenchmarkReadMemStatsLatency(b *testing.B) { stop := applyGCLoad(b) // Spend this much time measuring latencies. latencies := make([]time.Duration, 0, 1024) // Run for timeToBench hitting ReadMemStats continuously // and measuring the latency. b.ResetTimer() var ms runtime.MemStats for i := 0; i < b.N; i++ { // Sleep for a bit, otherwise we're just going to keep // stopping the world and no one will get to do anything. time.Sleep(100 * time.Millisecond) start := time.Now() runtime.ReadMemStats(&ms) latencies = append(latencies, time.Since(start)) } // Make sure to stop the timer before we wait! The load created above // is very heavy-weight and not easy to stop, so we could end up // confusing the benchmarking framework for small b.N. b.StopTimer() stop() // Disable the default */op metrics. // ns/op doesn't mean anything because it's an average, but we // have a sleep in our b.N loop above which skews this significantly. b.ReportMetric(0, "ns/op") b.ReportMetric(0, "B/op") b.ReportMetric(0, "allocs/op") // Sort latencies then report percentiles. sort.Slice(latencies, func(i, j int) bool { return latencies[i] < latencies[j] }) b.ReportMetric(float64(latencies[len(latencies)*50/100]), "p50-ns") b.ReportMetric(float64(latencies[len(latencies)*90/100]), "p90-ns") b.ReportMetric(float64(latencies[len(latencies)*99/100]), "p99-ns") } func TestUserForcedGC(t *testing.T) { // Test that runtime.GC() triggers a GC even if GOGC=off. defer debug.SetGCPercent(debug.SetGCPercent(-1)) var ms1, ms2 runtime.MemStats runtime.ReadMemStats(&ms1) runtime.GC() runtime.ReadMemStats(&ms2) if ms1.NumGC == ms2.NumGC { t.Fatalf("runtime.GC() did not trigger GC") } if ms1.NumForcedGC == ms2.NumForcedGC { t.Fatalf("runtime.GC() was not accounted in NumForcedGC") } } func writeBarrierBenchmark(b *testing.B, f func()) { runtime.GC() var ms runtime.MemStats runtime.ReadMemStats(&ms) //b.Logf("heap size: %d MB", ms.HeapAlloc>>20) // Keep GC running continuously during the benchmark, which in // turn keeps the write barrier on continuously. var stop uint32 done := make(chan bool) go func() { for atomic.LoadUint32(&stop) == 0 { runtime.GC() } close(done) }() defer func() { atomic.StoreUint32(&stop, 1) <-done }() b.ResetTimer() f() b.StopTimer() } func BenchmarkWriteBarrier(b *testing.B) { if runtime.GOMAXPROCS(-1) < 2 { // We don't want GC to take our time. b.Skip("need GOMAXPROCS >= 2") } // Construct a large tree both so the GC runs for a while and // so we have a data structure to manipulate the pointers of. type node struct { l, r *node } var wbRoots []*node var mkTree func(level int) *node mkTree = func(level int) *node { if level == 0 { return nil } n := &node{mkTree(level - 1), mkTree(level - 1)} if level == 10 { // Seed GC with enough early pointers so it // doesn't start termination barriers when it // only has the top of the tree. wbRoots = append(wbRoots, n) } return n } const depth = 22 // 64 MB root := mkTree(22) writeBarrierBenchmark(b, func() { var stack [depth]*node tos := -1 // There are two write barriers per iteration, so i+=2. for i := 0; i < b.N; i += 2 { if tos == -1 { stack[0] = root tos = 0 } // Perform one step of reversing the tree. n := stack[tos] if n.l == nil { tos-- } else { n.l, n.r = n.r, n.l stack[tos] = n.l stack[tos+1] = n.r tos++ } if i%(1<<12) == 0 { // Avoid non-preemptible loops (see issue #10958). runtime.Gosched() } } }) runtime.KeepAlive(wbRoots) } func BenchmarkBulkWriteBarrier(b *testing.B) { if runtime.GOMAXPROCS(-1) < 2 { // We don't want GC to take our time. b.Skip("need GOMAXPROCS >= 2") } // Construct a large set of objects we can copy around. const heapSize = 64 << 20 type obj [16]*byte ptrs := make([]*obj, heapSize/unsafe.Sizeof(obj{})) for i := range ptrs { ptrs[i] = new(obj) } writeBarrierBenchmark(b, func() { const blockSize = 1024 var pos int for i := 0; i < b.N; i += blockSize { // Rotate block. block := ptrs[pos : pos+blockSize] first := block[0] copy(block, block[1:]) block[blockSize-1] = first pos += blockSize if pos+blockSize > len(ptrs) { pos = 0 } runtime.Gosched() } }) runtime.KeepAlive(ptrs) } func BenchmarkScanStackNoLocals(b *testing.B) { var ready sync.WaitGroup teardown := make(chan bool) for j := 0; j < 10; j++ { ready.Add(1) go func() { x := 100000 countpwg(&x, &ready, teardown) }() } ready.Wait() b.ResetTimer() for i := 0; i < b.N; i++ { b.StartTimer() runtime.GC() runtime.GC() b.StopTimer() } close(teardown) } func BenchmarkMSpanCountAlloc(b *testing.B) { // Allocate one dummy mspan for the whole benchmark. s := runtime.AllocMSpan() defer runtime.FreeMSpan(s) // n is the number of bytes to benchmark against. // n must always be a multiple of 8, since gcBits is // always rounded up 8 bytes. for _, n := range []int{8, 16, 32, 64, 128} { b.Run(fmt.Sprintf("bits=%d", n*8), func(b *testing.B) { // Initialize a new byte slice with pseduo-random data. bits := make([]byte, n) rand.Read(bits) b.ResetTimer() for i := 0; i < b.N; i++ { runtime.MSpanCountAlloc(s, bits) } }) } } func countpwg(n *int, ready *sync.WaitGroup, teardown chan bool) { if *n == 0 { ready.Done() <-teardown return } *n-- countpwg(n, ready, teardown) } func TestMemoryLimit(t *testing.T) { if testing.Short() { t.Skip("stress test that takes time to run") } if runtime.NumCPU() < 4 { t.Skip("want at least 4 CPUs for this test") } got := runTestProg(t, "testprog", "GCMemoryLimit") want := "OK\n" if got != want { t.Fatalf("expected %q, but got %q", want, got) } } func TestMemoryLimitNoGCPercent(t *testing.T) { if testing.Short() { t.Skip("stress test that takes time to run") } if runtime.NumCPU() < 4 { t.Skip("want at least 4 CPUs for this test") } got := runTestProg(t, "testprog", "GCMemoryLimitNoGCPercent") want := "OK\n" if got != want { t.Fatalf("expected %q, but got %q", want, got) } } func TestMyGenericFunc(t *testing.T) { runtime.MyGenericFunc[int]() }