// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "go_asm.h" #include "go_tls.h" #include "tls_arm64.h" #include "funcdata.h" #include "textflag.h" TEXT runtime·rt0_go(SB),NOSPLIT|TOPFRAME,$0 // SP = stack; R0 = argc; R1 = argv SUB $32, RSP MOVW R0, 8(RSP) // argc MOVD R1, 16(RSP) // argv #ifdef TLS_darwin // Initialize TLS. MOVD ZR, g // clear g, make sure it's not junk. SUB $32, RSP MRS_TPIDR_R0 AND $~7, R0 MOVD R0, 16(RSP) // arg2: TLS base MOVD $runtime·tls_g(SB), R2 MOVD R2, 8(RSP) // arg1: &tlsg BL ·tlsinit(SB) ADD $32, RSP #endif // create istack out of the given (operating system) stack. // _cgo_init may update stackguard. MOVD $runtime·g0(SB), g MOVD RSP, R7 MOVD $(-64*1024)(R7), R0 MOVD R0, g_stackguard0(g) MOVD R0, g_stackguard1(g) MOVD R0, (g_stack+stack_lo)(g) MOVD R7, (g_stack+stack_hi)(g) // if there is a _cgo_init, call it using the gcc ABI. MOVD _cgo_init(SB), R12 CBZ R12, nocgo #ifdef GOOS_android MRS_TPIDR_R0 // load TLS base pointer MOVD R0, R3 // arg 3: TLS base pointer MOVD $runtime·tls_g(SB), R2 // arg 2: &tls_g #else MOVD $0, R2 // arg 2: not used when using platform's TLS #endif MOVD $setg_gcc<>(SB), R1 // arg 1: setg MOVD g, R0 // arg 0: G SUB $16, RSP // reserve 16 bytes for sp-8 where fp may be saved. BL (R12) ADD $16, RSP nocgo: BL runtime·save_g(SB) // update stackguard after _cgo_init MOVD (g_stack+stack_lo)(g), R0 ADD $const_stackGuard, R0 MOVD R0, g_stackguard0(g) MOVD R0, g_stackguard1(g) // set the per-goroutine and per-mach "registers" MOVD $runtime·m0(SB), R0 // save m->g0 = g0 MOVD g, m_g0(R0) // save m0 to g0->m MOVD R0, g_m(g) BL runtime·check(SB) #ifdef GOOS_windows BL runtime·wintls(SB) #endif MOVW 8(RSP), R0 // copy argc MOVW R0, -8(RSP) MOVD 16(RSP), R0 // copy argv MOVD R0, 0(RSP) BL runtime·args(SB) BL runtime·osinit(SB) BL runtime·schedinit(SB) // create a new goroutine to start program MOVD $runtime·mainPC(SB), R0 // entry SUB $16, RSP MOVD R0, 8(RSP) // arg MOVD $0, 0(RSP) // dummy LR BL runtime·newproc(SB) ADD $16, RSP // start this M BL runtime·mstart(SB) // Prevent dead-code elimination of debugCallV2, which is // intended to be called by debuggers. MOVD $runtime·debugCallV2(SB), R0 MOVD $0, R0 MOVD R0, (R0) // boom UNDEF DATA runtime·mainPC+0(SB)/8,$runtime·main(SB) GLOBL runtime·mainPC(SB),RODATA,$8 // Windows ARM64 needs an immediate 0xf000 argument. // See go.dev/issues/53837. #define BREAK \ #ifdef GOOS_windows \ BRK $0xf000 \ #else \ BRK \ #endif \ TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0 BREAK RET TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0 RET TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME,$0 BL runtime·mstart0(SB) RET // not reached /* * go-routine */ // void gogo(Gobuf*) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB), NOSPLIT|NOFRAME, $0-8 MOVD buf+0(FP), R5 MOVD gobuf_g(R5), R6 MOVD 0(R6), R4 // make sure g != nil B gogo<>(SB) TEXT gogo<>(SB), NOSPLIT|NOFRAME, $0 MOVD R6, g BL runtime·save_g(SB) MOVD gobuf_sp(R5), R0 MOVD R0, RSP MOVD gobuf_bp(R5), R29 MOVD gobuf_lr(R5), LR MOVD gobuf_ret(R5), R0 MOVD gobuf_ctxt(R5), R26 MOVD $0, gobuf_sp(R5) MOVD $0, gobuf_bp(R5) MOVD $0, gobuf_ret(R5) MOVD $0, gobuf_lr(R5) MOVD $0, gobuf_ctxt(R5) CMP ZR, ZR // set condition codes for == test, needed by stack split MOVD gobuf_pc(R5), R6 B (R6) // void mcall(fn func(*g)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB), NOSPLIT|NOFRAME, $0-8 MOVD R0, R26 // context // Save caller state in g->sched MOVD RSP, R0 MOVD R0, (g_sched+gobuf_sp)(g) MOVD R29, (g_sched+gobuf_bp)(g) MOVD LR, (g_sched+gobuf_pc)(g) MOVD $0, (g_sched+gobuf_lr)(g) // Switch to m->g0 & its stack, call fn. MOVD g, R3 MOVD g_m(g), R8 MOVD m_g0(R8), g BL runtime·save_g(SB) CMP g, R3 BNE 2(PC) B runtime·badmcall(SB) MOVD (g_sched+gobuf_sp)(g), R0 MOVD R0, RSP // sp = m->g0->sched.sp MOVD (g_sched+gobuf_bp)(g), R29 MOVD R3, R0 // arg = g MOVD $0, -16(RSP) // dummy LR SUB $16, RSP MOVD 0(R26), R4 // code pointer BL (R4) B runtime·badmcall2(SB) // systemstack_switch is a dummy routine that systemstack leaves at the bottom // of the G stack. We need to distinguish the routine that // lives at the bottom of the G stack from the one that lives // at the top of the system stack because the one at the top of // the system stack terminates the stack walk (see topofstack()). TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 UNDEF BL (LR) // make sure this function is not leaf RET // func systemstack(fn func()) TEXT runtime·systemstack(SB), NOSPLIT, $0-8 MOVD fn+0(FP), R3 // R3 = fn MOVD R3, R26 // context MOVD g_m(g), R4 // R4 = m MOVD m_gsignal(R4), R5 // R5 = gsignal CMP g, R5 BEQ noswitch MOVD m_g0(R4), R5 // R5 = g0 CMP g, R5 BEQ noswitch MOVD m_curg(R4), R6 CMP g, R6 BEQ switch // Bad: g is not gsignal, not g0, not curg. What is it? // Hide call from linker nosplit analysis. MOVD $runtime·badsystemstack(SB), R3 BL (R3) B runtime·abort(SB) switch: // save our state in g->sched. Pretend to // be systemstack_switch if the G stack is scanned. BL gosave_systemstack_switch<>(SB) // switch to g0 MOVD R5, g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R3 MOVD R3, RSP MOVD (g_sched+gobuf_bp)(g), R29 // call target function MOVD 0(R26), R3 // code pointer BL (R3) // switch back to g MOVD g_m(g), R3 MOVD m_curg(R3), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R0 MOVD R0, RSP MOVD (g_sched+gobuf_bp)(g), R29 MOVD $0, (g_sched+gobuf_sp)(g) MOVD $0, (g_sched+gobuf_bp)(g) RET noswitch: // already on m stack, just call directly // Using a tail call here cleans up tracebacks since we won't stop // at an intermediate systemstack. MOVD 0(R26), R3 // code pointer MOVD.P 16(RSP), R30 // restore LR SUB $8, RSP, R29 // restore FP B (R3) // func switchToCrashStack0(fn func()) TEXT runtime·switchToCrashStack0(SB), NOSPLIT, $0-8 MOVD R0, R26 // context register MOVD g_m(g), R1 // curm // set g to gcrash MOVD $runtime·gcrash(SB), g // g = &gcrash BL runtime·save_g(SB) // clobbers R0 MOVD R1, g_m(g) // g.m = curm MOVD g, m_g0(R1) // curm.g0 = g // switch to crashstack MOVD (g_stack+stack_hi)(g), R1 SUB $(4*8), R1 MOVD R1, RSP // call target function MOVD 0(R26), R0 CALL (R0) // should never return CALL runtime·abort(SB) UNDEF /* * support for morestack */ // Called during function prolog when more stack is needed. // Caller has already loaded: // R3 prolog's LR (R30) // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0 // Cannot grow scheduler stack (m->g0). MOVD g_m(g), R8 MOVD m_g0(R8), R4 // Called from f. // Set g->sched to context in f MOVD RSP, R0 MOVD R0, (g_sched+gobuf_sp)(g) MOVD R29, (g_sched+gobuf_bp)(g) MOVD LR, (g_sched+gobuf_pc)(g) MOVD R3, (g_sched+gobuf_lr)(g) MOVD R26, (g_sched+gobuf_ctxt)(g) CMP g, R4 BNE 3(PC) BL runtime·badmorestackg0(SB) B runtime·abort(SB) // Cannot grow signal stack (m->gsignal). MOVD m_gsignal(R8), R4 CMP g, R4 BNE 3(PC) BL runtime·badmorestackgsignal(SB) B runtime·abort(SB) // Called from f. // Set m->morebuf to f's callers. MOVD R3, (m_morebuf+gobuf_pc)(R8) // f's caller's PC MOVD RSP, R0 MOVD R0, (m_morebuf+gobuf_sp)(R8) // f's caller's RSP MOVD g, (m_morebuf+gobuf_g)(R8) // Call newstack on m->g0's stack. MOVD m_g0(R8), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R0 MOVD R0, RSP MOVD (g_sched+gobuf_bp)(g), R29 MOVD.W $0, -16(RSP) // create a call frame on g0 (saved LR; keep 16-aligned) BL runtime·newstack(SB) // Not reached, but make sure the return PC from the call to newstack // is still in this function, and not the beginning of the next. UNDEF TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0 // Force SPWRITE. This function doesn't actually write SP, // but it is called with a special calling convention where // the caller doesn't save LR on stack but passes it as a // register (R3), and the unwinder currently doesn't understand. // Make it SPWRITE to stop unwinding. (See issue 54332) MOVD RSP, RSP MOVW $0, R26 B runtime·morestack(SB) // spillArgs stores return values from registers to a *internal/abi.RegArgs in R20. TEXT ·spillArgs(SB),NOSPLIT,$0-0 STP (R0, R1), (0*8)(R20) STP (R2, R3), (2*8)(R20) STP (R4, R5), (4*8)(R20) STP (R6, R7), (6*8)(R20) STP (R8, R9), (8*8)(R20) STP (R10, R11), (10*8)(R20) STP (R12, R13), (12*8)(R20) STP (R14, R15), (14*8)(R20) FSTPD (F0, F1), (16*8)(R20) FSTPD (F2, F3), (18*8)(R20) FSTPD (F4, F5), (20*8)(R20) FSTPD (F6, F7), (22*8)(R20) FSTPD (F8, F9), (24*8)(R20) FSTPD (F10, F11), (26*8)(R20) FSTPD (F12, F13), (28*8)(R20) FSTPD (F14, F15), (30*8)(R20) RET // unspillArgs loads args into registers from a *internal/abi.RegArgs in R20. TEXT ·unspillArgs(SB),NOSPLIT,$0-0 LDP (0*8)(R20), (R0, R1) LDP (2*8)(R20), (R2, R3) LDP (4*8)(R20), (R4, R5) LDP (6*8)(R20), (R6, R7) LDP (8*8)(R20), (R8, R9) LDP (10*8)(R20), (R10, R11) LDP (12*8)(R20), (R12, R13) LDP (14*8)(R20), (R14, R15) FLDPD (16*8)(R20), (F0, F1) FLDPD (18*8)(R20), (F2, F3) FLDPD (20*8)(R20), (F4, F5) FLDPD (22*8)(R20), (F6, F7) FLDPD (24*8)(R20), (F8, F9) FLDPD (26*8)(R20), (F10, F11) FLDPD (28*8)(R20), (F12, F13) FLDPD (30*8)(R20), (F14, F15) RET // reflectcall: call a function with the given argument list // func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. // Caution: ugly multiline assembly macros in your future! #define DISPATCH(NAME,MAXSIZE) \ MOVD $MAXSIZE, R27; \ CMP R27, R16; \ BGT 3(PC); \ MOVD $NAME(SB), R27; \ B (R27) // Note: can't just "B NAME(SB)" - bad inlining results. TEXT ·reflectcall(SB), NOSPLIT|NOFRAME, $0-48 MOVWU frameSize+32(FP), R16 DISPATCH(runtime·call16, 16) DISPATCH(runtime·call32, 32) DISPATCH(runtime·call64, 64) DISPATCH(runtime·call128, 128) DISPATCH(runtime·call256, 256) DISPATCH(runtime·call512, 512) DISPATCH(runtime·call1024, 1024) DISPATCH(runtime·call2048, 2048) DISPATCH(runtime·call4096, 4096) DISPATCH(runtime·call8192, 8192) DISPATCH(runtime·call16384, 16384) DISPATCH(runtime·call32768, 32768) DISPATCH(runtime·call65536, 65536) DISPATCH(runtime·call131072, 131072) DISPATCH(runtime·call262144, 262144) DISPATCH(runtime·call524288, 524288) DISPATCH(runtime·call1048576, 1048576) DISPATCH(runtime·call2097152, 2097152) DISPATCH(runtime·call4194304, 4194304) DISPATCH(runtime·call8388608, 8388608) DISPATCH(runtime·call16777216, 16777216) DISPATCH(runtime·call33554432, 33554432) DISPATCH(runtime·call67108864, 67108864) DISPATCH(runtime·call134217728, 134217728) DISPATCH(runtime·call268435456, 268435456) DISPATCH(runtime·call536870912, 536870912) DISPATCH(runtime·call1073741824, 1073741824) MOVD $runtime·badreflectcall(SB), R0 B (R0) #define CALLFN(NAME,MAXSIZE) \ TEXT NAME(SB), WRAPPER, $MAXSIZE-48; \ NO_LOCAL_POINTERS; \ /* copy arguments to stack */ \ MOVD stackArgs+16(FP), R3; \ MOVWU stackArgsSize+24(FP), R4; \ ADD $8, RSP, R5; \ BIC $0xf, R4, R6; \ CBZ R6, 6(PC); \ /* if R6=(argsize&~15) != 0 */ \ ADD R6, R5, R6; \ /* copy 16 bytes a time */ \ LDP.P 16(R3), (R7, R8); \ STP.P (R7, R8), 16(R5); \ CMP R5, R6; \ BNE -3(PC); \ AND $0xf, R4, R6; \ CBZ R6, 6(PC); \ /* if R6=(argsize&15) != 0 */ \ ADD R6, R5, R6; \ /* copy 1 byte a time for the rest */ \ MOVBU.P 1(R3), R7; \ MOVBU.P R7, 1(R5); \ CMP R5, R6; \ BNE -3(PC); \ /* set up argument registers */ \ MOVD regArgs+40(FP), R20; \ CALL ·unspillArgs(SB); \ /* call function */ \ MOVD f+8(FP), R26; \ MOVD (R26), R20; \ PCDATA $PCDATA_StackMapIndex, $0; \ BL (R20); \ /* copy return values back */ \ MOVD regArgs+40(FP), R20; \ CALL ·spillArgs(SB); \ MOVD stackArgsType+0(FP), R7; \ MOVD stackArgs+16(FP), R3; \ MOVWU stackArgsSize+24(FP), R4; \ MOVWU stackRetOffset+28(FP), R6; \ ADD $8, RSP, R5; \ ADD R6, R5; \ ADD R6, R3; \ SUB R6, R4; \ BL callRet<>(SB); \ RET // callRet copies return values back at the end of call*. This is a // separate function so it can allocate stack space for the arguments // to reflectcallmove. It does not follow the Go ABI; it expects its // arguments in registers. TEXT callRet<>(SB), NOSPLIT, $48-0 NO_LOCAL_POINTERS STP (R7, R3), 8(RSP) STP (R5, R4), 24(RSP) MOVD R20, 40(RSP) BL runtime·reflectcallmove(SB) RET CALLFN(·call16, 16) CALLFN(·call32, 32) CALLFN(·call64, 64) CALLFN(·call128, 128) CALLFN(·call256, 256) CALLFN(·call512, 512) CALLFN(·call1024, 1024) CALLFN(·call2048, 2048) CALLFN(·call4096, 4096) CALLFN(·call8192, 8192) CALLFN(·call16384, 16384) CALLFN(·call32768, 32768) CALLFN(·call65536, 65536) CALLFN(·call131072, 131072) CALLFN(·call262144, 262144) CALLFN(·call524288, 524288) CALLFN(·call1048576, 1048576) CALLFN(·call2097152, 2097152) CALLFN(·call4194304, 4194304) CALLFN(·call8388608, 8388608) CALLFN(·call16777216, 16777216) CALLFN(·call33554432, 33554432) CALLFN(·call67108864, 67108864) CALLFN(·call134217728, 134217728) CALLFN(·call268435456, 268435456) CALLFN(·call536870912, 536870912) CALLFN(·call1073741824, 1073741824) // func memhash32(p unsafe.Pointer, h uintptr) uintptr TEXT runtime·memhash32(SB),NOSPLIT|NOFRAME,$0-24 MOVB runtime·useAeshash(SB), R10 CBZ R10, noaes MOVD $runtime·aeskeysched+0(SB), R3 VEOR V0.B16, V0.B16, V0.B16 VLD1 (R3), [V2.B16] VLD1 (R0), V0.S[1] VMOV R1, V0.S[0] AESE V2.B16, V0.B16 AESMC V0.B16, V0.B16 AESE V2.B16, V0.B16 AESMC V0.B16, V0.B16 AESE V2.B16, V0.B16 VMOV V0.D[0], R0 RET noaes: B runtime·memhash32Fallback(SB) // func memhash64(p unsafe.Pointer, h uintptr) uintptr TEXT runtime·memhash64(SB),NOSPLIT|NOFRAME,$0-24 MOVB runtime·useAeshash(SB), R10 CBZ R10, noaes MOVD $runtime·aeskeysched+0(SB), R3 VEOR V0.B16, V0.B16, V0.B16 VLD1 (R3), [V2.B16] VLD1 (R0), V0.D[1] VMOV R1, V0.D[0] AESE V2.B16, V0.B16 AESMC V0.B16, V0.B16 AESE V2.B16, V0.B16 AESMC V0.B16, V0.B16 AESE V2.B16, V0.B16 VMOV V0.D[0], R0 RET noaes: B runtime·memhash64Fallback(SB) // func memhash(p unsafe.Pointer, h, size uintptr) uintptr TEXT runtime·memhash(SB),NOSPLIT|NOFRAME,$0-32 MOVB runtime·useAeshash(SB), R10 CBZ R10, noaes B aeshashbody<>(SB) noaes: B runtime·memhashFallback(SB) // func strhash(p unsafe.Pointer, h uintptr) uintptr TEXT runtime·strhash(SB),NOSPLIT|NOFRAME,$0-24 MOVB runtime·useAeshash(SB), R10 CBZ R10, noaes LDP (R0), (R0, R2) // string data / length B aeshashbody<>(SB) noaes: B runtime·strhashFallback(SB) // R0: data // R1: seed data // R2: length // At return, R0 = return value TEXT aeshashbody<>(SB),NOSPLIT|NOFRAME,$0 VEOR V30.B16, V30.B16, V30.B16 VMOV R1, V30.D[0] VMOV R2, V30.D[1] // load length into seed MOVD $runtime·aeskeysched+0(SB), R4 VLD1.P 16(R4), [V0.B16] AESE V30.B16, V0.B16 AESMC V0.B16, V0.B16 CMP $16, R2 BLO aes0to15 BEQ aes16 CMP $32, R2 BLS aes17to32 CMP $64, R2 BLS aes33to64 CMP $128, R2 BLS aes65to128 B aes129plus aes0to15: CBZ R2, aes0 VEOR V2.B16, V2.B16, V2.B16 TBZ $3, R2, less_than_8 VLD1.P 8(R0), V2.D[0] less_than_8: TBZ $2, R2, less_than_4 VLD1.P 4(R0), V2.S[2] less_than_4: TBZ $1, R2, less_than_2 VLD1.P 2(R0), V2.H[6] less_than_2: TBZ $0, R2, done VLD1 (R0), V2.B[14] done: AESE V0.B16, V2.B16 AESMC V2.B16, V2.B16 AESE V0.B16, V2.B16 AESMC V2.B16, V2.B16 AESE V0.B16, V2.B16 AESMC V2.B16, V2.B16 VMOV V2.D[0], R0 RET aes0: VMOV V0.D[0], R0 RET aes16: VLD1 (R0), [V2.B16] B done aes17to32: // make second seed VLD1 (R4), [V1.B16] AESE V30.B16, V1.B16 AESMC V1.B16, V1.B16 SUB $16, R2, R10 VLD1.P (R0)(R10), [V2.B16] VLD1 (R0), [V3.B16] AESE V0.B16, V2.B16 AESMC V2.B16, V2.B16 AESE V1.B16, V3.B16 AESMC V3.B16, V3.B16 AESE V0.B16, V2.B16 AESMC V2.B16, V2.B16 AESE V1.B16, V3.B16 AESMC V3.B16, V3.B16 AESE V0.B16, V2.B16 AESE V1.B16, V3.B16 VEOR V3.B16, V2.B16, V2.B16 VMOV V2.D[0], R0 RET aes33to64: VLD1 (R4), [V1.B16, V2.B16, V3.B16] AESE V30.B16, V1.B16 AESMC V1.B16, V1.B16 AESE V30.B16, V2.B16 AESMC V2.B16, V2.B16 AESE V30.B16, V3.B16 AESMC V3.B16, V3.B16 SUB $32, R2, R10 VLD1.P (R0)(R10), [V4.B16, V5.B16] VLD1 (R0), [V6.B16, V7.B16] AESE V0.B16, V4.B16 AESMC V4.B16, V4.B16 AESE V1.B16, V5.B16 AESMC V5.B16, V5.B16 AESE V2.B16, V6.B16 AESMC V6.B16, V6.B16 AESE V3.B16, V7.B16 AESMC V7.B16, V7.B16 AESE V0.B16, V4.B16 AESMC V4.B16, V4.B16 AESE V1.B16, V5.B16 AESMC V5.B16, V5.B16 AESE V2.B16, V6.B16 AESMC V6.B16, V6.B16 AESE V3.B16, V7.B16 AESMC V7.B16, V7.B16 AESE V0.B16, V4.B16 AESE V1.B16, V5.B16 AESE V2.B16, V6.B16 AESE V3.B16, V7.B16 VEOR V6.B16, V4.B16, V4.B16 VEOR V7.B16, V5.B16, V5.B16 VEOR V5.B16, V4.B16, V4.B16 VMOV V4.D[0], R0 RET aes65to128: VLD1.P 64(R4), [V1.B16, V2.B16, V3.B16, V4.B16] VLD1 (R4), [V5.B16, V6.B16, V7.B16] AESE V30.B16, V1.B16 AESMC V1.B16, V1.B16 AESE V30.B16, V2.B16 AESMC V2.B16, V2.B16 AESE V30.B16, V3.B16 AESMC V3.B16, V3.B16 AESE V30.B16, V4.B16 AESMC V4.B16, V4.B16 AESE V30.B16, V5.B16 AESMC V5.B16, V5.B16 AESE V30.B16, V6.B16 AESMC V6.B16, V6.B16 AESE V30.B16, V7.B16 AESMC V7.B16, V7.B16 SUB $64, R2, R10 VLD1.P (R0)(R10), [V8.B16, V9.B16, V10.B16, V11.B16] VLD1 (R0), [V12.B16, V13.B16, V14.B16, V15.B16] AESE V0.B16, V8.B16 AESMC V8.B16, V8.B16 AESE V1.B16, V9.B16 AESMC V9.B16, V9.B16 AESE V2.B16, V10.B16 AESMC V10.B16, V10.B16 AESE V3.B16, V11.B16 AESMC V11.B16, V11.B16 AESE V4.B16, V12.B16 AESMC V12.B16, V12.B16 AESE V5.B16, V13.B16 AESMC V13.B16, V13.B16 AESE V6.B16, V14.B16 AESMC V14.B16, V14.B16 AESE V7.B16, V15.B16 AESMC V15.B16, V15.B16 AESE V0.B16, V8.B16 AESMC V8.B16, V8.B16 AESE V1.B16, V9.B16 AESMC V9.B16, V9.B16 AESE V2.B16, V10.B16 AESMC V10.B16, V10.B16 AESE V3.B16, V11.B16 AESMC V11.B16, V11.B16 AESE V4.B16, V12.B16 AESMC V12.B16, V12.B16 AESE V5.B16, V13.B16 AESMC V13.B16, V13.B16 AESE V6.B16, V14.B16 AESMC V14.B16, V14.B16 AESE V7.B16, V15.B16 AESMC V15.B16, V15.B16 AESE V0.B16, V8.B16 AESE V1.B16, V9.B16 AESE V2.B16, V10.B16 AESE V3.B16, V11.B16 AESE V4.B16, V12.B16 AESE V5.B16, V13.B16 AESE V6.B16, V14.B16 AESE V7.B16, V15.B16 VEOR V12.B16, V8.B16, V8.B16 VEOR V13.B16, V9.B16, V9.B16 VEOR V14.B16, V10.B16, V10.B16 VEOR V15.B16, V11.B16, V11.B16 VEOR V10.B16, V8.B16, V8.B16 VEOR V11.B16, V9.B16, V9.B16 VEOR V9.B16, V8.B16, V8.B16 VMOV V8.D[0], R0 RET aes129plus: PRFM (R0), PLDL1KEEP VLD1.P 64(R4), [V1.B16, V2.B16, V3.B16, V4.B16] VLD1 (R4), [V5.B16, V6.B16, V7.B16] AESE V30.B16, V1.B16 AESMC V1.B16, V1.B16 AESE V30.B16, V2.B16 AESMC V2.B16, V2.B16 AESE V30.B16, V3.B16 AESMC V3.B16, V3.B16 AESE V30.B16, V4.B16 AESMC V4.B16, V4.B16 AESE V30.B16, V5.B16 AESMC V5.B16, V5.B16 AESE V30.B16, V6.B16 AESMC V6.B16, V6.B16 AESE V30.B16, V7.B16 AESMC V7.B16, V7.B16 ADD R0, R2, R10 SUB $128, R10, R10 VLD1.P 64(R10), [V8.B16, V9.B16, V10.B16, V11.B16] VLD1 (R10), [V12.B16, V13.B16, V14.B16, V15.B16] SUB $1, R2, R2 LSR $7, R2, R2 aesloop: AESE V8.B16, V0.B16 AESMC V0.B16, V0.B16 AESE V9.B16, V1.B16 AESMC V1.B16, V1.B16 AESE V10.B16, V2.B16 AESMC V2.B16, V2.B16 AESE V11.B16, V3.B16 AESMC V3.B16, V3.B16 AESE V12.B16, V4.B16 AESMC V4.B16, V4.B16 AESE V13.B16, V5.B16 AESMC V5.B16, V5.B16 AESE V14.B16, V6.B16 AESMC V6.B16, V6.B16 AESE V15.B16, V7.B16 AESMC V7.B16, V7.B16 VLD1.P 64(R0), [V8.B16, V9.B16, V10.B16, V11.B16] AESE V8.B16, V0.B16 AESMC V0.B16, V0.B16 AESE V9.B16, V1.B16 AESMC V1.B16, V1.B16 AESE V10.B16, V2.B16 AESMC V2.B16, V2.B16 AESE V11.B16, V3.B16 AESMC V3.B16, V3.B16 VLD1.P 64(R0), [V12.B16, V13.B16, V14.B16, V15.B16] AESE V12.B16, V4.B16 AESMC V4.B16, V4.B16 AESE V13.B16, V5.B16 AESMC V5.B16, V5.B16 AESE V14.B16, V6.B16 AESMC V6.B16, V6.B16 AESE V15.B16, V7.B16 AESMC V7.B16, V7.B16 SUB $1, R2, R2 CBNZ R2, aesloop AESE V8.B16, V0.B16 AESMC V0.B16, V0.B16 AESE V9.B16, V1.B16 AESMC V1.B16, V1.B16 AESE V10.B16, V2.B16 AESMC V2.B16, V2.B16 AESE V11.B16, V3.B16 AESMC V3.B16, V3.B16 AESE V12.B16, V4.B16 AESMC V4.B16, V4.B16 AESE V13.B16, V5.B16 AESMC V5.B16, V5.B16 AESE V14.B16, V6.B16 AESMC V6.B16, V6.B16 AESE V15.B16, V7.B16 AESMC V7.B16, V7.B16 AESE V8.B16, V0.B16 AESMC V0.B16, V0.B16 AESE V9.B16, V1.B16 AESMC V1.B16, V1.B16 AESE V10.B16, V2.B16 AESMC V2.B16, V2.B16 AESE V11.B16, V3.B16 AESMC V3.B16, V3.B16 AESE V12.B16, V4.B16 AESMC V4.B16, V4.B16 AESE V13.B16, V5.B16 AESMC V5.B16, V5.B16 AESE V14.B16, V6.B16 AESMC V6.B16, V6.B16 AESE V15.B16, V7.B16 AESMC V7.B16, V7.B16 AESE V8.B16, V0.B16 AESE V9.B16, V1.B16 AESE V10.B16, V2.B16 AESE V11.B16, V3.B16 AESE V12.B16, V4.B16 AESE V13.B16, V5.B16 AESE V14.B16, V6.B16 AESE V15.B16, V7.B16 VEOR V0.B16, V1.B16, V0.B16 VEOR V2.B16, V3.B16, V2.B16 VEOR V4.B16, V5.B16, V4.B16 VEOR V6.B16, V7.B16, V6.B16 VEOR V0.B16, V2.B16, V0.B16 VEOR V4.B16, V6.B16, V4.B16 VEOR V4.B16, V0.B16, V0.B16 VMOV V0.D[0], R0 RET TEXT runtime·procyield(SB),NOSPLIT,$0-0 MOVWU cycles+0(FP), R0 again: YIELD SUBW $1, R0 CBNZ R0, again RET // Save state of caller into g->sched, // but using fake PC from systemstack_switch. // Must only be called from functions with no locals ($0) // or else unwinding from systemstack_switch is incorrect. // Smashes R0. TEXT gosave_systemstack_switch<>(SB),NOSPLIT|NOFRAME,$0 MOVD $runtime·systemstack_switch(SB), R0 ADD $8, R0 // get past prologue MOVD R0, (g_sched+gobuf_pc)(g) MOVD RSP, R0 MOVD R0, (g_sched+gobuf_sp)(g) MOVD R29, (g_sched+gobuf_bp)(g) MOVD $0, (g_sched+gobuf_lr)(g) MOVD $0, (g_sched+gobuf_ret)(g) // Assert ctxt is zero. See func save. MOVD (g_sched+gobuf_ctxt)(g), R0 CBZ R0, 2(PC) CALL runtime·abort(SB) RET // func asmcgocall_no_g(fn, arg unsafe.Pointer) // Call fn(arg) aligned appropriately for the gcc ABI. // Called on a system stack, and there may be no g yet (during needm). TEXT ·asmcgocall_no_g(SB),NOSPLIT,$0-16 MOVD fn+0(FP), R1 MOVD arg+8(FP), R0 SUB $16, RSP // skip over saved frame pointer below RSP BL (R1) ADD $16, RSP // skip over saved frame pointer below RSP RET // func asmcgocall(fn, arg unsafe.Pointer) int32 // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.go for more details. TEXT ·asmcgocall(SB),NOSPLIT,$0-20 MOVD fn+0(FP), R1 MOVD arg+8(FP), R0 MOVD RSP, R2 // save original stack pointer CBZ g, nosave MOVD g, R4 // Figure out if we need to switch to m->g0 stack. // We get called to create new OS threads too, and those // come in on the m->g0 stack already. Or we might already // be on the m->gsignal stack. MOVD g_m(g), R8 MOVD m_gsignal(R8), R3 CMP R3, g BEQ nosave MOVD m_g0(R8), R3 CMP R3, g BEQ nosave // Switch to system stack. MOVD R0, R9 // gosave_systemstack_switch<> and save_g might clobber R0 BL gosave_systemstack_switch<>(SB) MOVD R3, g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R0 MOVD R0, RSP MOVD (g_sched+gobuf_bp)(g), R29 MOVD R9, R0 // Now on a scheduling stack (a pthread-created stack). // Save room for two of our pointers /*, plus 32 bytes of callee // save area that lives on the caller stack. */ MOVD RSP, R13 SUB $16, R13 MOVD R13, RSP MOVD R4, 0(RSP) // save old g on stack MOVD (g_stack+stack_hi)(R4), R4 SUB R2, R4 MOVD R4, 8(RSP) // save depth in old g stack (can't just save SP, as stack might be copied during a callback) BL (R1) MOVD R0, R9 // Restore g, stack pointer. R0 is errno, so don't touch it MOVD 0(RSP), g BL runtime·save_g(SB) MOVD (g_stack+stack_hi)(g), R5 MOVD 8(RSP), R6 SUB R6, R5 MOVD R9, R0 MOVD R5, RSP MOVW R0, ret+16(FP) RET nosave: // Running on a system stack, perhaps even without a g. // Having no g can happen during thread creation or thread teardown // (see needm/dropm on Solaris, for example). // This code is like the above sequence but without saving/restoring g // and without worrying about the stack moving out from under us // (because we're on a system stack, not a goroutine stack). // The above code could be used directly if already on a system stack, // but then the only path through this code would be a rare case on Solaris. // Using this code for all "already on system stack" calls exercises it more, // which should help keep it correct. MOVD RSP, R13 SUB $16, R13 MOVD R13, RSP MOVD $0, R4 MOVD R4, 0(RSP) // Where above code stores g, in case someone looks during debugging. MOVD R2, 8(RSP) // Save original stack pointer. BL (R1) // Restore stack pointer. MOVD 8(RSP), R2 MOVD R2, RSP MOVD R0, ret+16(FP) RET // cgocallback(fn, frame unsafe.Pointer, ctxt uintptr) // See cgocall.go for more details. TEXT ·cgocallback(SB),NOSPLIT,$24-24 NO_LOCAL_POINTERS // Skip cgocallbackg, just dropm when fn is nil, and frame is the saved g. // It is used to dropm while thread is exiting. MOVD fn+0(FP), R1 CBNZ R1, loadg // Restore the g from frame. MOVD frame+8(FP), g B dropm loadg: // Load g from thread-local storage. BL runtime·load_g(SB) // If g is nil, Go did not create the current thread, // or if this thread never called into Go on pthread platforms. // Call needm to obtain one for temporary use. // In this case, we're running on the thread stack, so there's // lots of space, but the linker doesn't know. Hide the call from // the linker analysis by using an indirect call. CBZ g, needm MOVD g_m(g), R8 MOVD R8, savedm-8(SP) B havem needm: MOVD g, savedm-8(SP) // g is zero, so is m. MOVD $runtime·needAndBindM(SB), R0 BL (R0) // Set m->g0->sched.sp = SP, so that if a panic happens // during the function we are about to execute, it will // have a valid SP to run on the g0 stack. // The next few lines (after the havem label) // will save this SP onto the stack and then write // the same SP back to m->sched.sp. That seems redundant, // but if an unrecovered panic happens, unwindm will // restore the g->sched.sp from the stack location // and then systemstack will try to use it. If we don't set it here, // that restored SP will be uninitialized (typically 0) and // will not be usable. MOVD g_m(g), R8 MOVD m_g0(R8), R3 MOVD RSP, R0 MOVD R0, (g_sched+gobuf_sp)(R3) MOVD R29, (g_sched+gobuf_bp)(R3) havem: // Now there's a valid m, and we're running on its m->g0. // Save current m->g0->sched.sp on stack and then set it to SP. // Save current sp in m->g0->sched.sp in preparation for // switch back to m->curg stack. // NOTE: unwindm knows that the saved g->sched.sp is at 16(RSP) aka savedsp-16(SP). // Beware that the frame size is actually 32+16. MOVD m_g0(R8), R3 MOVD (g_sched+gobuf_sp)(R3), R4 MOVD R4, savedsp-16(SP) MOVD RSP, R0 MOVD R0, (g_sched+gobuf_sp)(R3) // Switch to m->curg stack and call runtime.cgocallbackg. // Because we are taking over the execution of m->curg // but *not* resuming what had been running, we need to // save that information (m->curg->sched) so we can restore it. // We can restore m->curg->sched.sp easily, because calling // runtime.cgocallbackg leaves SP unchanged upon return. // To save m->curg->sched.pc, we push it onto the curg stack and // open a frame the same size as cgocallback's g0 frame. // Once we switch to the curg stack, the pushed PC will appear // to be the return PC of cgocallback, so that the traceback // will seamlessly trace back into the earlier calls. MOVD m_curg(R8), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R4 // prepare stack as R4 MOVD (g_sched+gobuf_pc)(g), R5 MOVD R5, -48(R4) MOVD (g_sched+gobuf_bp)(g), R5 MOVD R5, -56(R4) // Gather our arguments into registers. MOVD fn+0(FP), R1 MOVD frame+8(FP), R2 MOVD ctxt+16(FP), R3 MOVD $-48(R4), R0 // maintain 16-byte SP alignment MOVD R0, RSP // switch stack MOVD R1, 8(RSP) MOVD R2, 16(RSP) MOVD R3, 24(RSP) MOVD $runtime·cgocallbackg(SB), R0 CALL (R0) // indirect call to bypass nosplit check. We're on a different stack now. // Restore g->sched (== m->curg->sched) from saved values. MOVD 0(RSP), R5 MOVD R5, (g_sched+gobuf_pc)(g) MOVD RSP, R4 ADD $48, R4, R4 MOVD R4, (g_sched+gobuf_sp)(g) // Switch back to m->g0's stack and restore m->g0->sched.sp. // (Unlike m->curg, the g0 goroutine never uses sched.pc, // so we do not have to restore it.) MOVD g_m(g), R8 MOVD m_g0(R8), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R0 MOVD R0, RSP MOVD savedsp-16(SP), R4 MOVD R4, (g_sched+gobuf_sp)(g) // If the m on entry was nil, we called needm above to borrow an m, // 1. for the duration of the call on non-pthread platforms, // 2. or the duration of the C thread alive on pthread platforms. // If the m on entry wasn't nil, // 1. the thread might be a Go thread, // 2. or it wasn't the first call from a C thread on pthread platforms, // since then we skip dropm to reuse the m in the first call. MOVD savedm-8(SP), R6 CBNZ R6, droppedm // Skip dropm to reuse it in the next call, when a pthread key has been created. MOVD _cgo_pthread_key_created(SB), R6 // It means cgo is disabled when _cgo_pthread_key_created is a nil pointer, need dropm. CBZ R6, dropm MOVD (R6), R6 CBNZ R6, droppedm dropm: MOVD $runtime·dropm(SB), R0 BL (R0) droppedm: // Done! RET // Called from cgo wrappers, this function returns g->m->curg.stack.hi. // Must obey the gcc calling convention. TEXT _cgo_topofstack(SB),NOSPLIT,$24 // g (R28) and REGTMP (R27) might be clobbered by load_g. They // are callee-save in the gcc calling convention, so save them. MOVD R27, savedR27-8(SP) MOVD g, saveG-16(SP) BL runtime·load_g(SB) MOVD g_m(g), R0 MOVD m_curg(R0), R0 MOVD (g_stack+stack_hi)(R0), R0 MOVD saveG-16(SP), g MOVD savedR28-8(SP), R27 RET // void setg(G*); set g. for use by needm. TEXT runtime·setg(SB), NOSPLIT, $0-8 MOVD gg+0(FP), g // This only happens if iscgo, so jump straight to save_g BL runtime·save_g(SB) RET // void setg_gcc(G*); set g called from gcc TEXT setg_gcc<>(SB),NOSPLIT,$8 MOVD R0, g MOVD R27, savedR27-8(SP) BL runtime·save_g(SB) MOVD savedR27-8(SP), R27 RET TEXT runtime·emptyfunc(SB),0,$0-0 RET TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0 MOVD ZR, R0 MOVD (R0), R0 UNDEF TEXT runtime·return0(SB), NOSPLIT, $0 MOVW $0, R0 RET // The top-most function running on a goroutine // returns to goexit+PCQuantum. TEXT runtime·goexit(SB),NOSPLIT|NOFRAME|TOPFRAME,$0-0 MOVD R0, R0 // NOP BL runtime·goexit1(SB) // does not return // This is called from .init_array and follows the platform, not Go, ABI. TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0 SUB $0x10, RSP MOVD R27, 8(RSP) // The access to global variables below implicitly uses R27, which is callee-save MOVD runtime·lastmoduledatap(SB), R1 MOVD R0, moduledata_next(R1) MOVD R0, runtime·lastmoduledatap(SB) MOVD 8(RSP), R27 ADD $0x10, RSP RET TEXT ·checkASM(SB),NOSPLIT,$0-1 MOVW $1, R3 MOVB R3, ret+0(FP) RET // gcWriteBarrier informs the GC about heap pointer writes. // // gcWriteBarrier does NOT follow the Go ABI. It accepts the // number of bytes of buffer needed in R25, and returns a pointer // to the buffer space in R25. // It clobbers condition codes. // It does not clobber any general-purpose registers except R27, // but may clobber others (e.g., floating point registers) // The act of CALLing gcWriteBarrier will clobber R30 (LR). TEXT gcWriteBarrier<>(SB),NOSPLIT,$200 // Save the registers clobbered by the fast path. STP (R0, R1), 184(RSP) retry: MOVD g_m(g), R0 MOVD m_p(R0), R0 MOVD (p_wbBuf+wbBuf_next)(R0), R1 MOVD (p_wbBuf+wbBuf_end)(R0), R27 // Increment wbBuf.next position. ADD R25, R1 // Is the buffer full? CMP R27, R1 BHI flush // Commit to the larger buffer. MOVD R1, (p_wbBuf+wbBuf_next)(R0) // Make return value (the original next position) SUB R25, R1, R25 // Restore registers. LDP 184(RSP), (R0, R1) RET flush: // Save all general purpose registers since these could be // clobbered by wbBufFlush and were not saved by the caller. // R0 and R1 already saved STP (R2, R3), 1*8(RSP) STP (R4, R5), 3*8(RSP) STP (R6, R7), 5*8(RSP) STP (R8, R9), 7*8(RSP) STP (R10, R11), 9*8(RSP) STP (R12, R13), 11*8(RSP) STP (R14, R15), 13*8(RSP) // R16, R17 may be clobbered by linker trampoline // R18 is unused. STP (R19, R20), 15*8(RSP) STP (R21, R22), 17*8(RSP) STP (R23, R24), 19*8(RSP) STP (R25, R26), 21*8(RSP) // R27 is temp register. // R28 is g. // R29 is frame pointer (unused). // R30 is LR, which was saved by the prologue. // R31 is SP. CALL runtime·wbBufFlush(SB) LDP 1*8(RSP), (R2, R3) LDP 3*8(RSP), (R4, R5) LDP 5*8(RSP), (R6, R7) LDP 7*8(RSP), (R8, R9) LDP 9*8(RSP), (R10, R11) LDP 11*8(RSP), (R12, R13) LDP 13*8(RSP), (R14, R15) LDP 15*8(RSP), (R19, R20) LDP 17*8(RSP), (R21, R22) LDP 19*8(RSP), (R23, R24) LDP 21*8(RSP), (R25, R26) JMP retry TEXT runtime·gcWriteBarrier1(SB),NOSPLIT,$0 MOVD $8, R25 JMP gcWriteBarrier<>(SB) TEXT runtime·gcWriteBarrier2(SB),NOSPLIT,$0 MOVD $16, R25 JMP gcWriteBarrier<>(SB) TEXT runtime·gcWriteBarrier3(SB),NOSPLIT,$0 MOVD $24, R25 JMP gcWriteBarrier<>(SB) TEXT runtime·gcWriteBarrier4(SB),NOSPLIT,$0 MOVD $32, R25 JMP gcWriteBarrier<>(SB) TEXT runtime·gcWriteBarrier5(SB),NOSPLIT,$0 MOVD $40, R25 JMP gcWriteBarrier<>(SB) TEXT runtime·gcWriteBarrier6(SB),NOSPLIT,$0 MOVD $48, R25 JMP gcWriteBarrier<>(SB) TEXT runtime·gcWriteBarrier7(SB),NOSPLIT,$0 MOVD $56, R25 JMP gcWriteBarrier<>(SB) TEXT runtime·gcWriteBarrier8(SB),NOSPLIT,$0 MOVD $64, R25 JMP gcWriteBarrier<>(SB) DATA debugCallFrameTooLarge<>+0x00(SB)/20, $"call frame too large" GLOBL debugCallFrameTooLarge<>(SB), RODATA, $20 // Size duplicated below // debugCallV2 is the entry point for debugger-injected function // calls on running goroutines. It informs the runtime that a // debug call has been injected and creates a call frame for the // debugger to fill in. // // To inject a function call, a debugger should: // 1. Check that the goroutine is in state _Grunning and that // there are at least 288 bytes free on the stack. // 2. Set SP as SP-16. // 3. Store the current LR in (SP) (using the SP after step 2). // 4. Store the current PC in the LR register. // 5. Write the desired argument frame size at SP-16 // 6. Save all machine registers (including flags and fpsimd registers) // so they can be restored later by the debugger. // 7. Set the PC to debugCallV2 and resume execution. // // If the goroutine is in state _Grunnable, then it's not generally // safe to inject a call because it may return out via other runtime // operations. Instead, the debugger should unwind the stack to find // the return to non-runtime code, add a temporary breakpoint there, // and inject the call once that breakpoint is hit. // // If the goroutine is in any other state, it's not safe to inject a call. // // This function communicates back to the debugger by setting R20 and // invoking BRK to raise a breakpoint signal. Note that the signal PC of // the signal triggered by the BRK instruction is the PC where the signal // is trapped, not the next PC, so to resume execution, the debugger needs // to set the signal PC to PC+4. See the comments in the implementation for // the protocol the debugger is expected to follow. InjectDebugCall in the // runtime tests demonstrates this protocol. // // The debugger must ensure that any pointers passed to the function // obey escape analysis requirements. Specifically, it must not pass // a stack pointer to an escaping argument. debugCallV2 cannot check // this invariant. // // This is ABIInternal because Go code injects its PC directly into new // goroutine stacks. TEXT runtime·debugCallV2(SB),NOSPLIT|NOFRAME,$0-0 STP (R29, R30), -280(RSP) SUB $272, RSP, RSP SUB $8, RSP, R29 // Save all registers that may contain pointers so they can be // conservatively scanned. // // We can't do anything that might clobber any of these // registers before this. STP (R27, g), (30*8)(RSP) STP (R25, R26), (28*8)(RSP) STP (R23, R24), (26*8)(RSP) STP (R21, R22), (24*8)(RSP) STP (R19, R20), (22*8)(RSP) STP (R16, R17), (20*8)(RSP) STP (R14, R15), (18*8)(RSP) STP (R12, R13), (16*8)(RSP) STP (R10, R11), (14*8)(RSP) STP (R8, R9), (12*8)(RSP) STP (R6, R7), (10*8)(RSP) STP (R4, R5), (8*8)(RSP) STP (R2, R3), (6*8)(RSP) STP (R0, R1), (4*8)(RSP) // Perform a safe-point check. MOVD R30, 8(RSP) // Caller's PC CALL runtime·debugCallCheck(SB) MOVD 16(RSP), R0 CBZ R0, good // The safety check failed. Put the reason string at the top // of the stack. MOVD R0, 8(RSP) MOVD 24(RSP), R0 MOVD R0, 16(RSP) // Set R20 to 8 and invoke BRK. The debugger should get the // reason a call can't be injected from SP+8 and resume execution. MOVD $8, R20 BREAK JMP restore good: // Registers are saved and it's safe to make a call. // Open up a call frame, moving the stack if necessary. // // Once the frame is allocated, this will set R20 to 0 and // invoke BRK. The debugger should write the argument // frame for the call at SP+8, set up argument registers, // set the LR as the signal PC + 4, set the PC to the function // to call, set R26 to point to the closure (if a closure call), // and resume execution. // // If the function returns, this will set R20 to 1 and invoke // BRK. The debugger can then inspect any return value saved // on the stack at SP+8 and in registers. To resume execution, // the debugger should restore the LR from (SP). // // If the function panics, this will set R20 to 2 and invoke BRK. // The interface{} value of the panic will be at SP+8. The debugger // can inspect the panic value and resume execution again. #define DEBUG_CALL_DISPATCH(NAME,MAXSIZE) \ CMP $MAXSIZE, R0; \ BGT 5(PC); \ MOVD $NAME(SB), R0; \ MOVD R0, 8(RSP); \ CALL runtime·debugCallWrap(SB); \ JMP restore MOVD 256(RSP), R0 // the argument frame size DEBUG_CALL_DISPATCH(debugCall32<>, 32) DEBUG_CALL_DISPATCH(debugCall64<>, 64) DEBUG_CALL_DISPATCH(debugCall128<>, 128) DEBUG_CALL_DISPATCH(debugCall256<>, 256) DEBUG_CALL_DISPATCH(debugCall512<>, 512) DEBUG_CALL_DISPATCH(debugCall1024<>, 1024) DEBUG_CALL_DISPATCH(debugCall2048<>, 2048) DEBUG_CALL_DISPATCH(debugCall4096<>, 4096) DEBUG_CALL_DISPATCH(debugCall8192<>, 8192) DEBUG_CALL_DISPATCH(debugCall16384<>, 16384) DEBUG_CALL_DISPATCH(debugCall32768<>, 32768) DEBUG_CALL_DISPATCH(debugCall65536<>, 65536) // The frame size is too large. Report the error. MOVD $debugCallFrameTooLarge<>(SB), R0 MOVD R0, 8(RSP) MOVD $20, R0 MOVD R0, 16(RSP) // length of debugCallFrameTooLarge string MOVD $8, R20 BREAK JMP restore restore: // Calls and failures resume here. // // Set R20 to 16 and invoke BRK. The debugger should restore // all registers except for PC and RSP and resume execution. MOVD $16, R20 BREAK // We must not modify flags after this point. // Restore pointer-containing registers, which may have been // modified from the debugger's copy by stack copying. LDP (30*8)(RSP), (R27, g) LDP (28*8)(RSP), (R25, R26) LDP (26*8)(RSP), (R23, R24) LDP (24*8)(RSP), (R21, R22) LDP (22*8)(RSP), (R19, R20) LDP (20*8)(RSP), (R16, R17) LDP (18*8)(RSP), (R14, R15) LDP (16*8)(RSP), (R12, R13) LDP (14*8)(RSP), (R10, R11) LDP (12*8)(RSP), (R8, R9) LDP (10*8)(RSP), (R6, R7) LDP (8*8)(RSP), (R4, R5) LDP (6*8)(RSP), (R2, R3) LDP (4*8)(RSP), (R0, R1) LDP -8(RSP), (R29, R27) ADD $288, RSP, RSP // Add 16 more bytes, see saveSigContext MOVD -16(RSP), R30 // restore old lr JMP (R27) // runtime.debugCallCheck assumes that functions defined with the // DEBUG_CALL_FN macro are safe points to inject calls. #define DEBUG_CALL_FN(NAME,MAXSIZE) \ TEXT NAME(SB),WRAPPER,$MAXSIZE-0; \ NO_LOCAL_POINTERS; \ MOVD $0, R20; \ BREAK; \ MOVD $1, R20; \ BREAK; \ RET DEBUG_CALL_FN(debugCall32<>, 32) DEBUG_CALL_FN(debugCall64<>, 64) DEBUG_CALL_FN(debugCall128<>, 128) DEBUG_CALL_FN(debugCall256<>, 256) DEBUG_CALL_FN(debugCall512<>, 512) DEBUG_CALL_FN(debugCall1024<>, 1024) DEBUG_CALL_FN(debugCall2048<>, 2048) DEBUG_CALL_FN(debugCall4096<>, 4096) DEBUG_CALL_FN(debugCall8192<>, 8192) DEBUG_CALL_FN(debugCall16384<>, 16384) DEBUG_CALL_FN(debugCall32768<>, 32768) DEBUG_CALL_FN(debugCall65536<>, 65536) // func debugCallPanicked(val interface{}) TEXT runtime·debugCallPanicked(SB),NOSPLIT,$16-16 // Copy the panic value to the top of stack at SP+8. MOVD val_type+0(FP), R0 MOVD R0, 8(RSP) MOVD val_data+8(FP), R0 MOVD R0, 16(RSP) MOVD $2, R20 BREAK RET // Note: these functions use a special calling convention to save generated code space. // Arguments are passed in registers, but the space for those arguments are allocated // in the caller's stack frame. These stubs write the args into that stack space and // then tail call to the corresponding runtime handler. // The tail call makes these stubs disappear in backtraces. // // Defined as ABIInternal since the compiler generates ABIInternal // calls to it directly and it does not use the stack-based Go ABI. TEXT runtime·panicIndex(SB),NOSPLIT,$0-16 JMP runtime·goPanicIndex(SB) TEXT runtime·panicIndexU(SB),NOSPLIT,$0-16 JMP runtime·goPanicIndexU(SB) TEXT runtime·panicSliceAlen(SB),NOSPLIT,$0-16 MOVD R1, R0 MOVD R2, R1 JMP runtime·goPanicSliceAlen(SB) TEXT runtime·panicSliceAlenU(SB),NOSPLIT,$0-16 MOVD R1, R0 MOVD R2, R1 JMP runtime·goPanicSliceAlenU(SB) TEXT runtime·panicSliceAcap(SB),NOSPLIT,$0-16 MOVD R1, R0 MOVD R2, R1 JMP runtime·goPanicSliceAcap(SB) TEXT runtime·panicSliceAcapU(SB),NOSPLIT,$0-16 MOVD R1, R0 MOVD R2, R1 JMP runtime·goPanicSliceAcapU(SB) TEXT runtime·panicSliceB(SB),NOSPLIT,$0-16 JMP runtime·goPanicSliceB(SB) TEXT runtime·panicSliceBU(SB),NOSPLIT,$0-16 JMP runtime·goPanicSliceBU(SB) TEXT runtime·panicSlice3Alen(SB),NOSPLIT,$0-16 MOVD R2, R0 MOVD R3, R1 JMP runtime·goPanicSlice3Alen(SB) TEXT runtime·panicSlice3AlenU(SB),NOSPLIT,$0-16 MOVD R2, R0 MOVD R3, R1 JMP runtime·goPanicSlice3AlenU(SB) TEXT runtime·panicSlice3Acap(SB),NOSPLIT,$0-16 MOVD R2, R0 MOVD R3, R1 JMP runtime·goPanicSlice3Acap(SB) TEXT runtime·panicSlice3AcapU(SB),NOSPLIT,$0-16 MOVD R2, R0 MOVD R3, R1 JMP runtime·goPanicSlice3AcapU(SB) TEXT runtime·panicSlice3B(SB),NOSPLIT,$0-16 MOVD R1, R0 MOVD R2, R1 JMP runtime·goPanicSlice3B(SB) TEXT runtime·panicSlice3BU(SB),NOSPLIT,$0-16 MOVD R1, R0 MOVD R2, R1 JMP runtime·goPanicSlice3BU(SB) TEXT runtime·panicSlice3C(SB),NOSPLIT,$0-16 JMP runtime·goPanicSlice3C(SB) TEXT runtime·panicSlice3CU(SB),NOSPLIT,$0-16 JMP runtime·goPanicSlice3CU(SB) TEXT runtime·panicSliceConvert(SB),NOSPLIT,$0-16 MOVD R2, R0 MOVD R3, R1 JMP runtime·goPanicSliceConvert(SB) TEXT ·getfp(SB),NOSPLIT|NOFRAME,$0 MOVD R29, R0 RET