// Copyright 2012 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // MakeFunc implementation. package reflect import ( "internal/abi" "unsafe" ) // makeFuncImpl is the closure value implementing the function // returned by MakeFunc. // The first three words of this type must be kept in sync with // methodValue and runtime.reflectMethodValue. // Any changes should be reflected in all three. type makeFuncImpl struct { makeFuncCtxt ftyp *funcType fn func([]Value) []Value } // MakeFunc returns a new function of the given Type // that wraps the function fn. When called, that new function // does the following: // // - converts its arguments to a slice of Values. // - runs results := fn(args). // - returns the results as a slice of Values, one per formal result. // // The implementation fn can assume that the argument Value slice // has the number and type of arguments given by typ. // If typ describes a variadic function, the final Value is itself // a slice representing the variadic arguments, as in the // body of a variadic function. The result Value slice returned by fn // must have the number and type of results given by typ. // // The Value.Call method allows the caller to invoke a typed function // in terms of Values; in contrast, MakeFunc allows the caller to implement // a typed function in terms of Values. // // The Examples section of the documentation includes an illustration // of how to use MakeFunc to build a swap function for different types. func MakeFunc(typ Type, fn func(args []Value) (results []Value)) Value { if typ.Kind() != Func { panic("reflect: call of MakeFunc with non-Func type") } t := typ.common() ftyp := (*funcType)(unsafe.Pointer(t)) code := abi.FuncPCABI0(makeFuncStub) // makeFuncImpl contains a stack map for use by the runtime _, _, abid := funcLayout(ftyp, nil) impl := &makeFuncImpl{ makeFuncCtxt: makeFuncCtxt{ fn: code, stack: abid.stackPtrs, argLen: abid.stackCallArgsSize, regPtrs: abid.inRegPtrs, }, ftyp: ftyp, fn: fn, } return Value{t, unsafe.Pointer(impl), flag(Func)} } // makeFuncStub is an assembly function that is the code half of // the function returned from MakeFunc. It expects a *callReflectFunc // as its context register, and its job is to invoke callReflect(ctxt, frame) // where ctxt is the context register and frame is a pointer to the first // word in the passed-in argument frame. func makeFuncStub() // The first 3 words of this type must be kept in sync with // makeFuncImpl and runtime.reflectMethodValue. // Any changes should be reflected in all three. type methodValue struct { makeFuncCtxt method int rcvr Value } // makeMethodValue converts v from the rcvr+method index representation // of a method value to an actual method func value, which is // basically the receiver value with a special bit set, into a true // func value - a value holding an actual func. The output is // semantically equivalent to the input as far as the user of package // reflect can tell, but the true func representation can be handled // by code like Convert and Interface and Assign. func makeMethodValue(op string, v Value) Value { if v.flag&flagMethod == 0 { panic("reflect: internal error: invalid use of makeMethodValue") } // Ignoring the flagMethod bit, v describes the receiver, not the method type. fl := v.flag & (flagRO | flagAddr | flagIndir) fl |= flag(v.typ().Kind()) rcvr := Value{v.typ(), v.ptr, fl} // v.Type returns the actual type of the method value. ftyp := (*funcType)(unsafe.Pointer(v.Type().(*rtype))) code := methodValueCallCodePtr() // methodValue contains a stack map for use by the runtime _, _, abid := funcLayout(ftyp, nil) fv := &methodValue{ makeFuncCtxt: makeFuncCtxt{ fn: code, stack: abid.stackPtrs, argLen: abid.stackCallArgsSize, regPtrs: abid.inRegPtrs, }, method: int(v.flag) >> flagMethodShift, rcvr: rcvr, } // Cause panic if method is not appropriate. // The panic would still happen during the call if we omit this, // but we want Interface() and other operations to fail early. methodReceiver(op, fv.rcvr, fv.method) return Value{ftyp.Common(), unsafe.Pointer(fv), v.flag&flagRO | flag(Func)} } func methodValueCallCodePtr() uintptr { return abi.FuncPCABI0(methodValueCall) } // methodValueCall is an assembly function that is the code half of // the function returned from makeMethodValue. It expects a *methodValue // as its context register, and its job is to invoke callMethod(ctxt, frame) // where ctxt is the context register and frame is a pointer to the first // word in the passed-in argument frame. func methodValueCall() // This structure must be kept in sync with runtime.reflectMethodValue. // Any changes should be reflected in all both. type makeFuncCtxt struct { fn uintptr stack *bitVector // ptrmap for both stack args and results argLen uintptr // just args regPtrs abi.IntArgRegBitmap } // moveMakeFuncArgPtrs uses ctxt.regPtrs to copy integer pointer arguments // in args.Ints to args.Ptrs where the GC can see them. // // This is similar to what reflectcallmove does in the runtime, except // that happens on the return path, whereas this happens on the call path. // // nosplit because pointers are being held in uintptr slots in args, so // having our stack scanned now could lead to accidentally freeing // memory. // //go:nosplit func moveMakeFuncArgPtrs(ctxt *makeFuncCtxt, args *abi.RegArgs) { for i, arg := range args.Ints { // Avoid write barriers! Because our write barrier enqueues what // was there before, we might enqueue garbage. if ctxt.regPtrs.Get(i) { *(*uintptr)(unsafe.Pointer(&args.Ptrs[i])) = arg } else { // We *must* zero this space ourselves because it's defined in // assembly code and the GC will scan these pointers. Otherwise, // there will be garbage here. *(*uintptr)(unsafe.Pointer(&args.Ptrs[i])) = 0 } } }