...
Run Format

Source file src/math/log1p.go

Documentation: math

  // Copyright 2010 The Go Authors. All rights reserved.
  // Use of this source code is governed by a BSD-style
  // license that can be found in the LICENSE file.
  
  package math
  
  // The original C code, the long comment, and the constants
  // below are from FreeBSD's /usr/src/lib/msun/src/s_log1p.c
  // and came with this notice. The go code is a simplified
  // version of the original C.
  //
  // ====================================================
  // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  //
  // Developed at SunPro, a Sun Microsystems, Inc. business.
  // Permission to use, copy, modify, and distribute this
  // software is freely granted, provided that this notice
  // is preserved.
  // ====================================================
  //
  //
  // double log1p(double x)
  //
  // Method :
  //   1. Argument Reduction: find k and f such that
  //                      1+x = 2**k * (1+f),
  //         where  sqrt(2)/2 < 1+f < sqrt(2) .
  //
  //      Note. If k=0, then f=x is exact. However, if k!=0, then f
  //      may not be representable exactly. In that case, a correction
  //      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
  //      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
  //      and add back the correction term c/u.
  //      (Note: when x > 2**53, one can simply return log(x))
  //
  //   2. Approximation of log1p(f).
  //      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
  //               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
  //               = 2s + s*R
  //      We use a special Reme algorithm on [0,0.1716] to generate
  //      a polynomial of degree 14 to approximate R The maximum error
  //      of this polynomial approximation is bounded by 2**-58.45. In
  //      other words,
  //                      2      4      6      8      10      12      14
  //          R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
  //      (the values of Lp1 to Lp7 are listed in the program)
  //      and
  //          |      2          14          |     -58.45
  //          | Lp1*s +...+Lp7*s    -  R(z) | <= 2
  //          |                             |
  //      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
  //      In order to guarantee error in log below 1ulp, we compute log
  //      by
  //              log1p(f) = f - (hfsq - s*(hfsq+R)).
  //
  //   3. Finally, log1p(x) = k*ln2 + log1p(f).
  //                        = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
  //      Here ln2 is split into two floating point number:
  //                   ln2_hi + ln2_lo,
  //      where n*ln2_hi is always exact for |n| < 2000.
  //
  // Special cases:
  //      log1p(x) is NaN with signal if x < -1 (including -INF) ;
  //      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
  //      log1p(NaN) is that NaN with no signal.
  //
  // Accuracy:
  //      according to an error analysis, the error is always less than
  //      1 ulp (unit in the last place).
  //
  // Constants:
  // The hexadecimal values are the intended ones for the following
  // constants. The decimal values may be used, provided that the
  // compiler will convert from decimal to binary accurately enough
  // to produce the hexadecimal values shown.
  //
  // Note: Assuming log() return accurate answer, the following
  //       algorithm can be used to compute log1p(x) to within a few ULP:
  //
  //              u = 1+x;
  //              if(u==1.0) return x ; else
  //                         return log(u)*(x/(u-1.0));
  //
  //       See HP-15C Advanced Functions Handbook, p.193.
  
  // Log1p returns the natural logarithm of 1 plus its argument x.
  // It is more accurate than Log(1 + x) when x is near zero.
  //
  // Special cases are:
  //	Log1p(+Inf) = +Inf
  //	Log1p(±0) = ±0
  //	Log1p(-1) = -Inf
  //	Log1p(x < -1) = NaN
  //	Log1p(NaN) = NaN
  func Log1p(x float64) float64
  
  func log1p(x float64) float64 {
  	const (
  		Sqrt2M1     = 4.142135623730950488017e-01  // Sqrt(2)-1 = 0x3fda827999fcef34
  		Sqrt2HalfM1 = -2.928932188134524755992e-01 // Sqrt(2)/2-1 = 0xbfd2bec333018866
  		Small       = 1.0 / (1 << 29)              // 2**-29 = 0x3e20000000000000
  		Tiny        = 1.0 / (1 << 54)              // 2**-54
  		Two53       = 1 << 53                      // 2**53
  		Ln2Hi       = 6.93147180369123816490e-01   // 3fe62e42fee00000
  		Ln2Lo       = 1.90821492927058770002e-10   // 3dea39ef35793c76
  		Lp1         = 6.666666666666735130e-01     // 3FE5555555555593
  		Lp2         = 3.999999999940941908e-01     // 3FD999999997FA04
  		Lp3         = 2.857142874366239149e-01     // 3FD2492494229359
  		Lp4         = 2.222219843214978396e-01     // 3FCC71C51D8E78AF
  		Lp5         = 1.818357216161805012e-01     // 3FC7466496CB03DE
  		Lp6         = 1.531383769920937332e-01     // 3FC39A09D078C69F
  		Lp7         = 1.479819860511658591e-01     // 3FC2F112DF3E5244
  	)
  
  	// special cases
  	switch {
  	case x < -1 || IsNaN(x): // includes -Inf
  		return NaN()
  	case x == -1:
  		return Inf(-1)
  	case IsInf(x, 1):
  		return Inf(1)
  	}
  
  	absx := x
  	if absx < 0 {
  		absx = -absx
  	}
  
  	var f float64
  	var iu uint64
  	k := 1
  	if absx < Sqrt2M1 { //  |x| < Sqrt(2)-1
  		if absx < Small { // |x| < 2**-29
  			if absx < Tiny { // |x| < 2**-54
  				return x
  			}
  			return x - x*x*0.5
  		}
  		if x > Sqrt2HalfM1 { // Sqrt(2)/2-1 < x
  			// (Sqrt(2)/2-1) < x < (Sqrt(2)-1)
  			k = 0
  			f = x
  			iu = 1
  		}
  	}
  	var c float64
  	if k != 0 {
  		var u float64
  		if absx < Two53 { // 1<<53
  			u = 1.0 + x
  			iu = Float64bits(u)
  			k = int((iu >> 52) - 1023)
  			if k > 0 {
  				c = 1.0 - (u - x)
  			} else {
  				c = x - (u - 1.0) // correction term
  				c /= u
  			}
  		} else {
  			u = x
  			iu = Float64bits(u)
  			k = int((iu >> 52) - 1023)
  			c = 0
  		}
  		iu &= 0x000fffffffffffff
  		if iu < 0x0006a09e667f3bcd { // mantissa of Sqrt(2)
  			u = Float64frombits(iu | 0x3ff0000000000000) // normalize u
  		} else {
  			k++
  			u = Float64frombits(iu | 0x3fe0000000000000) // normalize u/2
  			iu = (0x0010000000000000 - iu) >> 2
  		}
  		f = u - 1.0 // Sqrt(2)/2 < u < Sqrt(2)
  	}
  	hfsq := 0.5 * f * f
  	var s, R, z float64
  	if iu == 0 { // |f| < 2**-20
  		if f == 0 {
  			if k == 0 {
  				return 0
  			}
  			c += float64(k) * Ln2Lo
  			return float64(k)*Ln2Hi + c
  		}
  		R = hfsq * (1.0 - 0.66666666666666666*f) // avoid division
  		if k == 0 {
  			return f - R
  		}
  		return float64(k)*Ln2Hi - ((R - (float64(k)*Ln2Lo + c)) - f)
  	}
  	s = f / (2.0 + f)
  	z = s * s
  	R = z * (Lp1 + z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))))
  	if k == 0 {
  		return f - (hfsq - s*(hfsq+R))
  	}
  	return float64(k)*Ln2Hi - ((hfsq - (s*(hfsq+R) + (float64(k)*Ln2Lo + c))) - f)
  }
  

View as plain text