// Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package big import ( "math" "testing" ) func TestZeroRat(t *testing.T) { var x, y, z Rat y.SetFrac64(0, 42) if x.Cmp(&y) != 0 { t.Errorf("x and y should be both equal and zero") } if s := x.String(); s != "0/1" { t.Errorf("got x = %s, want 0/1", s) } if s := x.RatString(); s != "0" { t.Errorf("got x = %s, want 0", s) } z.Add(&x, &y) if s := z.RatString(); s != "0" { t.Errorf("got x+y = %s, want 0", s) } z.Sub(&x, &y) if s := z.RatString(); s != "0" { t.Errorf("got x-y = %s, want 0", s) } z.Mul(&x, &y) if s := z.RatString(); s != "0" { t.Errorf("got x*y = %s, want 0", s) } // check for division by zero defer func() { if s := recover(); s == nil || s.(string) != "division by zero" { panic(s) } }() z.Quo(&x, &y) } func TestRatSign(t *testing.T) { zero := NewRat(0, 1) for _, a := range setStringTests { x, ok := new(Rat).SetString(a.in) if !ok { continue } s := x.Sign() e := x.Cmp(zero) if s != e { t.Errorf("got %d; want %d for z = %v", s, e, &x) } } } var ratCmpTests = []struct { rat1, rat2 string out int }{ {"0", "0/1", 0}, {"1/1", "1", 0}, {"-1", "-2/2", 0}, {"1", "0", 1}, {"0/1", "1/1", -1}, {"-5/1434770811533343057144", "-5/1434770811533343057145", -1}, {"49832350382626108453/8964749413", "49832350382626108454/8964749413", -1}, {"-37414950961700930/7204075375675961", "37414950961700930/7204075375675961", -1}, {"37414950961700930/7204075375675961", "74829901923401860/14408150751351922", 0}, } func TestRatCmp(t *testing.T) { for i, test := range ratCmpTests { x, _ := new(Rat).SetString(test.rat1) y, _ := new(Rat).SetString(test.rat2) out := x.Cmp(y) if out != test.out { t.Errorf("#%d got out = %v; want %v", i, out, test.out) } } } func TestIsInt(t *testing.T) { one := NewInt(1) for _, a := range setStringTests { x, ok := new(Rat).SetString(a.in) if !ok { continue } i := x.IsInt() e := x.Denom().Cmp(one) == 0 if i != e { t.Errorf("got IsInt(%v) == %v; want %v", x, i, e) } } } func TestRatAbs(t *testing.T) { zero := new(Rat) for _, a := range setStringTests { x, ok := new(Rat).SetString(a.in) if !ok { continue } e := new(Rat).Set(x) if e.Cmp(zero) < 0 { e.Sub(zero, e) } z := new(Rat).Abs(x) if z.Cmp(e) != 0 { t.Errorf("got Abs(%v) = %v; want %v", x, z, e) } } } func TestRatNeg(t *testing.T) { zero := new(Rat) for _, a := range setStringTests { x, ok := new(Rat).SetString(a.in) if !ok { continue } e := new(Rat).Sub(zero, x) z := new(Rat).Neg(x) if z.Cmp(e) != 0 { t.Errorf("got Neg(%v) = %v; want %v", x, z, e) } } } func TestRatInv(t *testing.T) { zero := new(Rat) for _, a := range setStringTests { x, ok := new(Rat).SetString(a.in) if !ok { continue } if x.Cmp(zero) == 0 { continue // avoid division by zero } e := new(Rat).SetFrac(x.Denom(), x.Num()) z := new(Rat).Inv(x) if z.Cmp(e) != 0 { t.Errorf("got Inv(%v) = %v; want %v", x, z, e) } } } type ratBinFun func(z, x, y *Rat) *Rat type ratBinArg struct { x, y, z string } func testRatBin(t *testing.T, i int, name string, f ratBinFun, a ratBinArg) { x, _ := new(Rat).SetString(a.x) y, _ := new(Rat).SetString(a.y) z, _ := new(Rat).SetString(a.z) out := f(new(Rat), x, y) if out.Cmp(z) != 0 { t.Errorf("%s #%d got %s want %s", name, i, out, z) } } var ratBinTests = []struct { x, y string sum, prod string }{ {"0", "0", "0", "0"}, {"0", "1", "1", "0"}, {"-1", "0", "-1", "0"}, {"-1", "1", "0", "-1"}, {"1", "1", "2", "1"}, {"1/2", "1/2", "1", "1/4"}, {"1/4", "1/3", "7/12", "1/12"}, {"2/5", "-14/3", "-64/15", "-28/15"}, {"4707/49292519774798173060", "-3367/70976135186689855734", "84058377121001851123459/1749296273614329067191168098769082663020", "-1760941/388732505247628681598037355282018369560"}, {"-61204110018146728334/3", "-31052192278051565633/2", "-215564796870448153567/6", "950260896245257153059642991192710872711/3"}, {"-854857841473707320655/4237645934602118692642972629634714039", "-18/31750379913563777419", "-27/133467566250814981", "15387441146526731771790/134546868362786310073779084329032722548987800600710485341"}, {"618575745270541348005638912139/19198433543745179392300736", "-19948846211000086/637313996471", "27674141753240653/30123979153216", "-6169936206128396568797607742807090270137721977/6117715203873571641674006593837351328"}, {"-3/26206484091896184128", "5/2848423294177090248", "15310893822118706237/9330894968229805033368778458685147968", "-5/24882386581946146755650075889827061248"}, {"26946729/330400702820", "41563965/225583428284", "1238218672302860271/4658307703098666660055", "224002580204097/14906584649915733312176"}, {"-8259900599013409474/7", "-84829337473700364773/56707961321161574960", "-468402123685491748914621885145127724451/396955729248131024720", "350340947706464153265156004876107029701/198477864624065512360"}, {"575775209696864/1320203974639986246357", "29/712593081308", "410331716733912717985762465/940768218243776489278275419794956", "808/45524274987585732633"}, {"1786597389946320496771/2066653520653241", "6269770/1992362624741777", "3559549865190272133656109052308126637/4117523232840525481453983149257", "8967230/3296219033"}, {"-36459180403360509753/32150500941194292113930", "9381566963714/9633539", "301622077145533298008420642898530153/309723104686531919656937098270", "-3784609207827/3426986245"}, } func TestRatBin(t *testing.T) { for i, test := range ratBinTests { arg := ratBinArg{test.x, test.y, test.sum} testRatBin(t, i, "Add", (*Rat).Add, arg) arg = ratBinArg{test.y, test.x, test.sum} testRatBin(t, i, "Add symmetric", (*Rat).Add, arg) arg = ratBinArg{test.sum, test.x, test.y} testRatBin(t, i, "Sub", (*Rat).Sub, arg) arg = ratBinArg{test.sum, test.y, test.x} testRatBin(t, i, "Sub symmetric", (*Rat).Sub, arg) arg = ratBinArg{test.x, test.y, test.prod} testRatBin(t, i, "Mul", (*Rat).Mul, arg) arg = ratBinArg{test.y, test.x, test.prod} testRatBin(t, i, "Mul symmetric", (*Rat).Mul, arg) if test.x != "0" { arg = ratBinArg{test.prod, test.x, test.y} testRatBin(t, i, "Quo", (*Rat).Quo, arg) } if test.y != "0" { arg = ratBinArg{test.prod, test.y, test.x} testRatBin(t, i, "Quo symmetric", (*Rat).Quo, arg) } } } func TestIssue820(t *testing.T) { x := NewRat(3, 1) y := NewRat(2, 1) z := y.Quo(x, y) q := NewRat(3, 2) if z.Cmp(q) != 0 { t.Errorf("got %s want %s", z, q) } y = NewRat(3, 1) x = NewRat(2, 1) z = y.Quo(x, y) q = NewRat(2, 3) if z.Cmp(q) != 0 { t.Errorf("got %s want %s", z, q) } x = NewRat(3, 1) z = x.Quo(x, x) q = NewRat(3, 3) if z.Cmp(q) != 0 { t.Errorf("got %s want %s", z, q) } } var setFrac64Tests = []struct { a, b int64 out string }{ {0, 1, "0"}, {0, -1, "0"}, {1, 1, "1"}, {-1, 1, "-1"}, {1, -1, "-1"}, {-1, -1, "1"}, {-9223372036854775808, -9223372036854775808, "1"}, } func TestRatSetFrac64Rat(t *testing.T) { for i, test := range setFrac64Tests { x := new(Rat).SetFrac64(test.a, test.b) if x.RatString() != test.out { t.Errorf("#%d got %s want %s", i, x.RatString(), test.out) } } } func TestIssue2379(t *testing.T) { // 1) no aliasing q := NewRat(3, 2) x := new(Rat) x.SetFrac(NewInt(3), NewInt(2)) if x.Cmp(q) != 0 { t.Errorf("1) got %s want %s", x, q) } // 2) aliasing of numerator x = NewRat(2, 3) x.SetFrac(NewInt(3), x.Num()) if x.Cmp(q) != 0 { t.Errorf("2) got %s want %s", x, q) } // 3) aliasing of denominator x = NewRat(2, 3) x.SetFrac(x.Denom(), NewInt(2)) if x.Cmp(q) != 0 { t.Errorf("3) got %s want %s", x, q) } // 4) aliasing of numerator and denominator x = NewRat(2, 3) x.SetFrac(x.Denom(), x.Num()) if x.Cmp(q) != 0 { t.Errorf("4) got %s want %s", x, q) } // 5) numerator and denominator are the same q = NewRat(1, 1) x = new(Rat) n := NewInt(7) x.SetFrac(n, n) if x.Cmp(q) != 0 { t.Errorf("5) got %s want %s", x, q) } } func TestIssue3521(t *testing.T) { a := new(Int) b := new(Int) a.SetString("64375784358435883458348587", 0) b.SetString("4789759874531", 0) // 0) a raw zero value has 1 as denominator zero := new(Rat) one := NewInt(1) if zero.Denom().Cmp(one) != 0 { t.Errorf("0) got %s want %s", zero.Denom(), one) } // 1a) the denominator of an (uninitialized) zero value is not shared with the value s := &zero.b d := zero.Denom() if d == s { t.Errorf("1a) got %s (%p) == %s (%p) want different *Int values", d, d, s, s) } // 1b) the denominator of an (uninitialized) value is a new 1 each time d1 := zero.Denom() d2 := zero.Denom() if d1 == d2 { t.Errorf("1b) got %s (%p) == %s (%p) want different *Int values", d1, d1, d2, d2) } // 1c) the denominator of an initialized zero value is shared with the value x := new(Rat) x.Set(x) // initialize x (any operation that sets x explicitly will do) s = &x.b d = x.Denom() if d != s { t.Errorf("1c) got %s (%p) != %s (%p) want identical *Int values", d, d, s, s) } // 1d) a zero value remains zero independent of denominator x.Denom().Set(new(Int).Neg(b)) if x.Cmp(zero) != 0 { t.Errorf("1d) got %s want %s", x, zero) } // 1e) a zero value may have a denominator != 0 and != 1 x.Num().Set(a) qab := new(Rat).SetFrac(a, b) if x.Cmp(qab) != 0 { t.Errorf("1e) got %s want %s", x, qab) } // 2a) an integral value becomes a fraction depending on denominator x.SetFrac64(10, 2) x.Denom().SetInt64(3) q53 := NewRat(5, 3) if x.Cmp(q53) != 0 { t.Errorf("2a) got %s want %s", x, q53) } // 2b) an integral value becomes a fraction depending on denominator x = NewRat(10, 2) x.Denom().SetInt64(3) if x.Cmp(q53) != 0 { t.Errorf("2b) got %s want %s", x, q53) } // 3) changing the numerator/denominator of a Rat changes the Rat x.SetFrac(a, b) a = x.Num() b = x.Denom() a.SetInt64(5) b.SetInt64(3) if x.Cmp(q53) != 0 { t.Errorf("3) got %s want %s", x, q53) } } func TestFloat32Distribution(t *testing.T) { // Generate a distribution of (sign, mantissa, exp) values // broader than the float32 range, and check Rat.Float32() // always picks the closest float32 approximation. var add = []int64{ 0, 1, 3, 5, 7, 9, 11, } var winc, einc = uint64(5), 15 // quick test (~60ms on x86-64) if *long { winc, einc = uint64(1), 1 // soak test (~1.5s on x86-64) } for _, sign := range "+-" { for _, a := range add { for wid := uint64(0); wid < 30; wid += winc { b := 1< 0 { num.Lsh(num, uint(exp)) } else { den.Lsh(den, uint(-exp)) } r := new(Rat).SetFrac(num, den) f, _ := r.Float32() if !checkIsBestApprox32(t, f, r) { // Append context information. t.Errorf("(input was mantissa %#x, exp %d; f = %g (%b); f ~ %g; r = %v)", b, exp, f, f, math.Ldexp(float64(b), exp), r) } checkNonLossyRoundtrip32(t, f) } } } } } func TestFloat64Distribution(t *testing.T) { // Generate a distribution of (sign, mantissa, exp) values // broader than the float64 range, and check Rat.Float64() // always picks the closest float64 approximation. var add = []int64{ 0, 1, 3, 5, 7, 9, 11, } var winc, einc = uint64(10), 500 // quick test (~12ms on x86-64) if *long { winc, einc = uint64(1), 1 // soak test (~75s on x86-64) } for _, sign := range "+-" { for _, a := range add { for wid := uint64(0); wid < 60; wid += winc { b := 1< 0 { num.Lsh(num, uint(exp)) } else { den.Lsh(den, uint(-exp)) } r := new(Rat).SetFrac(num, den) f, _ := r.Float64() if !checkIsBestApprox64(t, f, r) { // Append context information. t.Errorf("(input was mantissa %#x, exp %d; f = %g (%b); f ~ %g; r = %v)", b, exp, f, f, math.Ldexp(float64(b), exp), r) } checkNonLossyRoundtrip64(t, f) } } } } } // TestSetFloat64NonFinite checks that SetFloat64 of a non-finite value // returns nil. func TestSetFloat64NonFinite(t *testing.T) { for _, f := range []float64{math.NaN(), math.Inf(+1), math.Inf(-1)} { var r Rat if r2 := r.SetFloat64(f); r2 != nil { t.Errorf("SetFloat64(%g) was %v, want nil", f, r2) } } } // checkNonLossyRoundtrip32 checks that a float->Rat->float roundtrip is // non-lossy for finite f. func checkNonLossyRoundtrip32(t *testing.T, f float32) { if !isFinite(float64(f)) { return } r := new(Rat).SetFloat64(float64(f)) if r == nil { t.Errorf("Rat.SetFloat64(float64(%g) (%b)) == nil", f, f) return } f2, exact := r.Float32() if f != f2 || !exact { t.Errorf("Rat.SetFloat64(float64(%g)).Float32() = %g (%b), %v, want %g (%b), %v; delta = %b", f, f2, f2, exact, f, f, true, f2-f) } } // checkNonLossyRoundtrip64 checks that a float->Rat->float roundtrip is // non-lossy for finite f. func checkNonLossyRoundtrip64(t *testing.T, f float64) { if !isFinite(f) { return } r := new(Rat).SetFloat64(f) if r == nil { t.Errorf("Rat.SetFloat64(%g (%b)) == nil", f, f) return } f2, exact := r.Float64() if f != f2 || !exact { t.Errorf("Rat.SetFloat64(%g).Float64() = %g (%b), %v, want %g (%b), %v; delta = %b", f, f2, f2, exact, f, f, true, f2-f) } } // delta returns the absolute difference between r and f. func delta(r *Rat, f float64) *Rat { d := new(Rat).Sub(r, new(Rat).SetFloat64(f)) return d.Abs(d) } // checkIsBestApprox32 checks that f is the best possible float32 // approximation of r. // Returns true on success. func checkIsBestApprox32(t *testing.T, f float32, r *Rat) bool { if math.Abs(float64(f)) >= math.MaxFloat32 { // Cannot check +Inf, -Inf, nor the float next to them (MaxFloat32). // But we have tests for these special cases. return true } // r must be strictly between f0 and f1, the floats bracketing f. f0 := math.Nextafter32(f, float32(math.Inf(-1))) f1 := math.Nextafter32(f, float32(math.Inf(+1))) // For f to be correct, r must be closer to f than to f0 or f1. df := delta(r, float64(f)) df0 := delta(r, float64(f0)) df1 := delta(r, float64(f1)) if df.Cmp(df0) > 0 { t.Errorf("Rat(%v).Float32() = %g (%b), but previous float32 %g (%b) is closer", r, f, f, f0, f0) return false } if df.Cmp(df1) > 0 { t.Errorf("Rat(%v).Float32() = %g (%b), but next float32 %g (%b) is closer", r, f, f, f1, f1) return false } if df.Cmp(df0) == 0 && !isEven32(f) { t.Errorf("Rat(%v).Float32() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f0, f0) return false } if df.Cmp(df1) == 0 && !isEven32(f) { t.Errorf("Rat(%v).Float32() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f1, f1) return false } return true } // checkIsBestApprox64 checks that f is the best possible float64 // approximation of r. // Returns true on success. func checkIsBestApprox64(t *testing.T, f float64, r *Rat) bool { if math.Abs(f) >= math.MaxFloat64 { // Cannot check +Inf, -Inf, nor the float next to them (MaxFloat64). // But we have tests for these special cases. return true } // r must be strictly between f0 and f1, the floats bracketing f. f0 := math.Nextafter(f, math.Inf(-1)) f1 := math.Nextafter(f, math.Inf(+1)) // For f to be correct, r must be closer to f than to f0 or f1. df := delta(r, f) df0 := delta(r, f0) df1 := delta(r, f1) if df.Cmp(df0) > 0 { t.Errorf("Rat(%v).Float64() = %g (%b), but previous float64 %g (%b) is closer", r, f, f, f0, f0) return false } if df.Cmp(df1) > 0 { t.Errorf("Rat(%v).Float64() = %g (%b), but next float64 %g (%b) is closer", r, f, f, f1, f1) return false } if df.Cmp(df0) == 0 && !isEven64(f) { t.Errorf("Rat(%v).Float64() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f0, f0) return false } if df.Cmp(df1) == 0 && !isEven64(f) { t.Errorf("Rat(%v).Float64() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f1, f1) return false } return true } func isEven32(f float32) bool { return math.Float32bits(f)&1 == 0 } func isEven64(f float64) bool { return math.Float64bits(f)&1 == 0 } func TestIsFinite(t *testing.T) { finites := []float64{ 1.0 / 3, 4891559871276714924261e+222, math.MaxFloat64, math.SmallestNonzeroFloat64, -math.MaxFloat64, -math.SmallestNonzeroFloat64, } for _, f := range finites { if !isFinite(f) { t.Errorf("!IsFinite(%g (%b))", f, f) } } nonfinites := []float64{ math.NaN(), math.Inf(-1), math.Inf(+1), } for _, f := range nonfinites { if isFinite(f) { t.Errorf("IsFinite(%g, (%b))", f, f) } } } func TestRatSetInt64(t *testing.T) { var testCases = []int64{ 0, 1, -1, 12345, -98765, math.MaxInt64, math.MinInt64, } var r = new(Rat) for i, want := range testCases { r.SetInt64(want) if !r.IsInt() { t.Errorf("#%d: Rat.SetInt64(%d) is not an integer", i, want) } num := r.Num() if !num.IsInt64() { t.Errorf("#%d: Rat.SetInt64(%d) numerator is not an int64", i, want) } got := num.Int64() if got != want { t.Errorf("#%d: Rat.SetInt64(%d) = %d, but expected %d", i, want, got, want) } } } func TestRatSetUint64(t *testing.T) { var testCases = []uint64{ 0, 1, 12345, ^uint64(0), } var r = new(Rat) for i, want := range testCases { r.SetUint64(want) if !r.IsInt() { t.Errorf("#%d: Rat.SetUint64(%d) is not an integer", i, want) } num := r.Num() if !num.IsUint64() { t.Errorf("#%d: Rat.SetUint64(%d) numerator is not a uint64", i, want) } got := num.Uint64() if got != want { t.Errorf("#%d: Rat.SetUint64(%d) = %d, but expected %d", i, want, got, want) } } } func BenchmarkRatCmp(b *testing.B) { x, y := NewRat(4, 1), NewRat(7, 2) for i := 0; i < b.N; i++ { x.Cmp(y) } } // TestIssue34919 verifies that a Rat's denominator is not modified // when simply accessing the Rat value. func TestIssue34919(t *testing.T) { for _, acc := range []struct { name string f func(*Rat) }{ {"Float32", func(x *Rat) { x.Float32() }}, {"Float64", func(x *Rat) { x.Float64() }}, {"Inv", func(x *Rat) { new(Rat).Inv(x) }}, {"Sign", func(x *Rat) { x.Sign() }}, {"IsInt", func(x *Rat) { x.IsInt() }}, {"Num", func(x *Rat) { x.Num() }}, // {"Denom", func(x *Rat) { x.Denom() }}, TODO(gri) should we change the API? See issue #33792. } { // A denominator of length 0 is interpreted as 1. Make sure that // "materialization" of the denominator doesn't lead to setting // the underlying array element 0 to 1. r := &Rat{Int{abs: nat{991}}, Int{abs: make(nat, 0, 1)}} acc.f(r) if d := r.b.abs[:1][0]; d != 0 { t.Errorf("%s modified denominator: got %d, want 0", acc.name, d) } } } func TestDenomRace(t *testing.T) { x := NewRat(1, 2) const N = 3 c := make(chan bool, N) for i := 0; i < N; i++ { go func() { // Denom (also used by Float.SetRat) used to mutate x unnecessarily, // provoking race reports when run in the race detector. x.Denom() new(Float).SetRat(x) c <- true }() } for i := 0; i < N; i++ { <-c } }