...
Run Format

Source file src/math/big/int.go

  // Copyright 2009 The Go Authors. All rights reserved.
  // Use of this source code is governed by a BSD-style
  // license that can be found in the LICENSE file.
  
  // This file implements signed multi-precision integers.
  
  package big
  
  import (
  	"fmt"
  	"io"
  	"math/rand"
  	"strings"
  )
  
  // An Int represents a signed multi-precision integer.
  // The zero value for an Int represents the value 0.
  type Int struct {
  	neg bool // sign
  	abs nat  // absolute value of the integer
  }
  
  var intOne = &Int{false, natOne}
  
  // Sign returns:
  //
  //	-1 if x <  0
  //	 0 if x == 0
  //	+1 if x >  0
  //
  func (x *Int) Sign() int {
  	if len(x.abs) == 0 {
  		return 0
  	}
  	if x.neg {
  		return -1
  	}
  	return 1
  }
  
  // SetInt64 sets z to x and returns z.
  func (z *Int) SetInt64(x int64) *Int {
  	neg := false
  	if x < 0 {
  		neg = true
  		x = -x
  	}
  	z.abs = z.abs.setUint64(uint64(x))
  	z.neg = neg
  	return z
  }
  
  // SetUint64 sets z to x and returns z.
  func (z *Int) SetUint64(x uint64) *Int {
  	z.abs = z.abs.setUint64(x)
  	z.neg = false
  	return z
  }
  
  // NewInt allocates and returns a new Int set to x.
  func NewInt(x int64) *Int {
  	return new(Int).SetInt64(x)
  }
  
  // Set sets z to x and returns z.
  func (z *Int) Set(x *Int) *Int {
  	if z != x {
  		z.abs = z.abs.set(x.abs)
  		z.neg = x.neg
  	}
  	return z
  }
  
  // Bits provides raw (unchecked but fast) access to x by returning its
  // absolute value as a little-endian Word slice. The result and x share
  // the same underlying array.
  // Bits is intended to support implementation of missing low-level Int
  // functionality outside this package; it should be avoided otherwise.
  func (x *Int) Bits() []Word {
  	return x.abs
  }
  
  // SetBits provides raw (unchecked but fast) access to z by setting its
  // value to abs, interpreted as a little-endian Word slice, and returning
  // z. The result and abs share the same underlying array.
  // SetBits is intended to support implementation of missing low-level Int
  // functionality outside this package; it should be avoided otherwise.
  func (z *Int) SetBits(abs []Word) *Int {
  	z.abs = nat(abs).norm()
  	z.neg = false
  	return z
  }
  
  // Abs sets z to |x| (the absolute value of x) and returns z.
  func (z *Int) Abs(x *Int) *Int {
  	z.Set(x)
  	z.neg = false
  	return z
  }
  
  // Neg sets z to -x and returns z.
  func (z *Int) Neg(x *Int) *Int {
  	z.Set(x)
  	z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign
  	return z
  }
  
  // Add sets z to the sum x+y and returns z.
  func (z *Int) Add(x, y *Int) *Int {
  	neg := x.neg
  	if x.neg == y.neg {
  		// x + y == x + y
  		// (-x) + (-y) == -(x + y)
  		z.abs = z.abs.add(x.abs, y.abs)
  	} else {
  		// x + (-y) == x - y == -(y - x)
  		// (-x) + y == y - x == -(x - y)
  		if x.abs.cmp(y.abs) >= 0 {
  			z.abs = z.abs.sub(x.abs, y.abs)
  		} else {
  			neg = !neg
  			z.abs = z.abs.sub(y.abs, x.abs)
  		}
  	}
  	z.neg = len(z.abs) > 0 && neg // 0 has no sign
  	return z
  }
  
  // Sub sets z to the difference x-y and returns z.
  func (z *Int) Sub(x, y *Int) *Int {
  	neg := x.neg
  	if x.neg != y.neg {
  		// x - (-y) == x + y
  		// (-x) - y == -(x + y)
  		z.abs = z.abs.add(x.abs, y.abs)
  	} else {
  		// x - y == x - y == -(y - x)
  		// (-x) - (-y) == y - x == -(x - y)
  		if x.abs.cmp(y.abs) >= 0 {
  			z.abs = z.abs.sub(x.abs, y.abs)
  		} else {
  			neg = !neg
  			z.abs = z.abs.sub(y.abs, x.abs)
  		}
  	}
  	z.neg = len(z.abs) > 0 && neg // 0 has no sign
  	return z
  }
  
  // Mul sets z to the product x*y and returns z.
  func (z *Int) Mul(x, y *Int) *Int {
  	// x * y == x * y
  	// x * (-y) == -(x * y)
  	// (-x) * y == -(x * y)
  	// (-x) * (-y) == x * y
  	z.abs = z.abs.mul(x.abs, y.abs)
  	z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
  	return z
  }
  
  // MulRange sets z to the product of all integers
  // in the range [a, b] inclusively and returns z.
  // If a > b (empty range), the result is 1.
  func (z *Int) MulRange(a, b int64) *Int {
  	switch {
  	case a > b:
  		return z.SetInt64(1) // empty range
  	case a <= 0 && b >= 0:
  		return z.SetInt64(0) // range includes 0
  	}
  	// a <= b && (b < 0 || a > 0)
  
  	neg := false
  	if a < 0 {
  		neg = (b-a)&1 == 0
  		a, b = -b, -a
  	}
  
  	z.abs = z.abs.mulRange(uint64(a), uint64(b))
  	z.neg = neg
  	return z
  }
  
  // Binomial sets z to the binomial coefficient of (n, k) and returns z.
  func (z *Int) Binomial(n, k int64) *Int {
  	// reduce the number of multiplications by reducing k
  	if n/2 < k && k <= n {
  		k = n - k // Binomial(n, k) == Binomial(n, n-k)
  	}
  	var a, b Int
  	a.MulRange(n-k+1, n)
  	b.MulRange(1, k)
  	return z.Quo(&a, &b)
  }
  
  // Quo sets z to the quotient x/y for y != 0 and returns z.
  // If y == 0, a division-by-zero run-time panic occurs.
  // Quo implements truncated division (like Go); see QuoRem for more details.
  func (z *Int) Quo(x, y *Int) *Int {
  	z.abs, _ = z.abs.div(nil, x.abs, y.abs)
  	z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
  	return z
  }
  
  // Rem sets z to the remainder x%y for y != 0 and returns z.
  // If y == 0, a division-by-zero run-time panic occurs.
  // Rem implements truncated modulus (like Go); see QuoRem for more details.
  func (z *Int) Rem(x, y *Int) *Int {
  	_, z.abs = nat(nil).div(z.abs, x.abs, y.abs)
  	z.neg = len(z.abs) > 0 && x.neg // 0 has no sign
  	return z
  }
  
  // QuoRem sets z to the quotient x/y and r to the remainder x%y
  // and returns the pair (z, r) for y != 0.
  // If y == 0, a division-by-zero run-time panic occurs.
  //
  // QuoRem implements T-division and modulus (like Go):
  //
  //	q = x/y      with the result truncated to zero
  //	r = x - y*q
  //
  // (See Daan Leijen, ``Division and Modulus for Computer Scientists''.)
  // See DivMod for Euclidean division and modulus (unlike Go).
  //
  func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
  	z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)
  	z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign
  	return z, r
  }
  
  // Div sets z to the quotient x/y for y != 0 and returns z.
  // If y == 0, a division-by-zero run-time panic occurs.
  // Div implements Euclidean division (unlike Go); see DivMod for more details.
  func (z *Int) Div(x, y *Int) *Int {
  	y_neg := y.neg // z may be an alias for y
  	var r Int
  	z.QuoRem(x, y, &r)
  	if r.neg {
  		if y_neg {
  			z.Add(z, intOne)
  		} else {
  			z.Sub(z, intOne)
  		}
  	}
  	return z
  }
  
  // Mod sets z to the modulus x%y for y != 0 and returns z.
  // If y == 0, a division-by-zero run-time panic occurs.
  // Mod implements Euclidean modulus (unlike Go); see DivMod for more details.
  func (z *Int) Mod(x, y *Int) *Int {
  	y0 := y // save y
  	if z == y || alias(z.abs, y.abs) {
  		y0 = new(Int).Set(y)
  	}
  	var q Int
  	q.QuoRem(x, y, z)
  	if z.neg {
  		if y0.neg {
  			z.Sub(z, y0)
  		} else {
  			z.Add(z, y0)
  		}
  	}
  	return z
  }
  
  // DivMod sets z to the quotient x div y and m to the modulus x mod y
  // and returns the pair (z, m) for y != 0.
  // If y == 0, a division-by-zero run-time panic occurs.
  //
  // DivMod implements Euclidean division and modulus (unlike Go):
  //
  //	q = x div y  such that
  //	m = x - y*q  with 0 <= m < |y|
  //
  // (See Raymond T. Boute, ``The Euclidean definition of the functions
  // div and mod''. ACM Transactions on Programming Languages and
  // Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
  // ACM press.)
  // See QuoRem for T-division and modulus (like Go).
  //
  func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
  	y0 := y // save y
  	if z == y || alias(z.abs, y.abs) {
  		y0 = new(Int).Set(y)
  	}
  	z.QuoRem(x, y, m)
  	if m.neg {
  		if y0.neg {
  			z.Add(z, intOne)
  			m.Sub(m, y0)
  		} else {
  			z.Sub(z, intOne)
  			m.Add(m, y0)
  		}
  	}
  	return z, m
  }
  
  // Cmp compares x and y and returns:
  //
  //   -1 if x <  y
  //    0 if x == y
  //   +1 if x >  y
  //
  func (x *Int) Cmp(y *Int) (r int) {
  	// x cmp y == x cmp y
  	// x cmp (-y) == x
  	// (-x) cmp y == y
  	// (-x) cmp (-y) == -(x cmp y)
  	switch {
  	case x.neg == y.neg:
  		r = x.abs.cmp(y.abs)
  		if x.neg {
  			r = -r
  		}
  	case x.neg:
  		r = -1
  	default:
  		r = 1
  	}
  	return
  }
  
  // low32 returns the least significant 32 bits of z.
  func low32(z nat) uint32 {
  	if len(z) == 0 {
  		return 0
  	}
  	return uint32(z[0])
  }
  
  // low64 returns the least significant 64 bits of z.
  func low64(z nat) uint64 {
  	if len(z) == 0 {
  		return 0
  	}
  	v := uint64(z[0])
  	if _W == 32 && len(z) > 1 {
  		v |= uint64(z[1]) << 32
  	}
  	return v
  }
  
  // Int64 returns the int64 representation of x.
  // If x cannot be represented in an int64, the result is undefined.
  func (x *Int) Int64() int64 {
  	v := int64(low64(x.abs))
  	if x.neg {
  		v = -v
  	}
  	return v
  }
  
  // Uint64 returns the uint64 representation of x.
  // If x cannot be represented in a uint64, the result is undefined.
  func (x *Int) Uint64() uint64 {
  	return low64(x.abs)
  }
  
  // SetString sets z to the value of s, interpreted in the given base,
  // and returns z and a boolean indicating success. The entire string
  // (not just a prefix) must be valid for success. If SetString fails,
  // the value of z is undefined but the returned value is nil.
  //
  // The base argument must be 0 or a value between 2 and MaxBase. If the base
  // is 0, the string prefix determines the actual conversion base. A prefix of
  // ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
  // ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
  //
  func (z *Int) SetString(s string, base int) (*Int, bool) {
  	r := strings.NewReader(s)
  	if _, _, err := z.scan(r, base); err != nil {
  		return nil, false
  	}
  	// entire string must have been consumed
  	if _, err := r.ReadByte(); err != io.EOF {
  		return nil, false
  	}
  	return z, true // err == io.EOF => scan consumed all of s
  }
  
  // SetBytes interprets buf as the bytes of a big-endian unsigned
  // integer, sets z to that value, and returns z.
  func (z *Int) SetBytes(buf []byte) *Int {
  	z.abs = z.abs.setBytes(buf)
  	z.neg = false
  	return z
  }
  
  // Bytes returns the absolute value of x as a big-endian byte slice.
  func (x *Int) Bytes() []byte {
  	buf := make([]byte, len(x.abs)*_S)
  	return buf[x.abs.bytes(buf):]
  }
  
  // BitLen returns the length of the absolute value of x in bits.
  // The bit length of 0 is 0.
  func (x *Int) BitLen() int {
  	return x.abs.bitLen()
  }
  
  // Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
  // If y <= 0, the result is 1 mod |m|; if m == nil or m == 0, z = x**y.
  //
  // Modular exponentation of inputs of a particular size is not a
  // cryptographically constant-time operation.
  func (z *Int) Exp(x, y, m *Int) *Int {
  	// See Knuth, volume 2, section 4.6.3.
  	var yWords nat
  	if !y.neg {
  		yWords = y.abs
  	}
  	// y >= 0
  
  	var mWords nat
  	if m != nil {
  		mWords = m.abs // m.abs may be nil for m == 0
  	}
  
  	z.abs = z.abs.expNN(x.abs, yWords, mWords)
  	z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign
  	if z.neg && len(mWords) > 0 {
  		// make modulus result positive
  		z.abs = z.abs.sub(mWords, z.abs) // z == x**y mod |m| && 0 <= z < |m|
  		z.neg = false
  	}
  
  	return z
  }
  
  // GCD sets z to the greatest common divisor of a and b, which both must
  // be > 0, and returns z.
  // If x and y are not nil, GCD sets x and y such that z = a*x + b*y.
  // If either a or b is <= 0, GCD sets z = x = y = 0.
  func (z *Int) GCD(x, y, a, b *Int) *Int {
  	if a.Sign() <= 0 || b.Sign() <= 0 {
  		z.SetInt64(0)
  		if x != nil {
  			x.SetInt64(0)
  		}
  		if y != nil {
  			y.SetInt64(0)
  		}
  		return z
  	}
  	if x == nil && y == nil {
  		return z.binaryGCD(a, b)
  	}
  
  	A := new(Int).Set(a)
  	B := new(Int).Set(b)
  
  	X := new(Int)
  	Y := new(Int).SetInt64(1)
  
  	lastX := new(Int).SetInt64(1)
  	lastY := new(Int)
  
  	q := new(Int)
  	temp := new(Int)
  
  	r := new(Int)
  	for len(B.abs) > 0 {
  		q, r = q.QuoRem(A, B, r)
  
  		A, B, r = B, r, A
  
  		temp.Set(X)
  		X.Mul(X, q)
  		X.neg = !X.neg
  		X.Add(X, lastX)
  		lastX.Set(temp)
  
  		temp.Set(Y)
  		Y.Mul(Y, q)
  		Y.neg = !Y.neg
  		Y.Add(Y, lastY)
  		lastY.Set(temp)
  	}
  
  	if x != nil {
  		*x = *lastX
  	}
  
  	if y != nil {
  		*y = *lastY
  	}
  
  	*z = *A
  	return z
  }
  
  // binaryGCD sets z to the greatest common divisor of a and b, which both must
  // be > 0, and returns z.
  // See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm B.
  func (z *Int) binaryGCD(a, b *Int) *Int {
  	u := z
  	v := new(Int)
  
  	// use one Euclidean iteration to ensure that u and v are approx. the same size
  	switch {
  	case len(a.abs) > len(b.abs):
  		// must set v before u since u may be alias for a or b (was issue #11284)
  		v.Rem(a, b)
  		u.Set(b)
  	case len(a.abs) < len(b.abs):
  		v.Rem(b, a)
  		u.Set(a)
  	default:
  		v.Set(b)
  		u.Set(a)
  	}
  	// a, b must not be used anymore (may be aliases with u)
  
  	// v might be 0 now
  	if len(v.abs) == 0 {
  		return u
  	}
  	// u > 0 && v > 0
  
  	// determine largest k such that u = u' << k, v = v' << k
  	k := u.abs.trailingZeroBits()
  	if vk := v.abs.trailingZeroBits(); vk < k {
  		k = vk
  	}
  	u.Rsh(u, k)
  	v.Rsh(v, k)
  
  	// determine t (we know that u > 0)
  	t := new(Int)
  	if u.abs[0]&1 != 0 {
  		// u is odd
  		t.Neg(v)
  	} else {
  		t.Set(u)
  	}
  
  	for len(t.abs) > 0 {
  		// reduce t
  		t.Rsh(t, t.abs.trailingZeroBits())
  		if t.neg {
  			v, t = t, v
  			v.neg = len(v.abs) > 0 && !v.neg // 0 has no sign
  		} else {
  			u, t = t, u
  		}
  		t.Sub(u, v)
  	}
  
  	return z.Lsh(u, k)
  }
  
  // Rand sets z to a pseudo-random number in [0, n) and returns z.
  func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
  	z.neg = false
  	if n.neg == true || len(n.abs) == 0 {
  		z.abs = nil
  		return z
  	}
  	z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen())
  	return z
  }
  
  // ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ
  // and returns z. If g and n are not relatively prime, the result is undefined.
  func (z *Int) ModInverse(g, n *Int) *Int {
  	if g.neg {
  		// GCD expects parameters a and b to be > 0.
  		var g2 Int
  		g = g2.Mod(g, n)
  	}
  	var d Int
  	d.GCD(z, nil, g, n)
  	// x and y are such that g*x + n*y = d. Since g and n are
  	// relatively prime, d = 1. Taking that modulo n results in
  	// g*x = 1, therefore x is the inverse element.
  	if z.neg {
  		z.Add(z, n)
  	}
  	return z
  }
  
  // Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0.
  // The y argument must be an odd integer.
  func Jacobi(x, y *Int) int {
  	if len(y.abs) == 0 || y.abs[0]&1 == 0 {
  		panic(fmt.Sprintf("big: invalid 2nd argument to Int.Jacobi: need odd integer but got %s", y))
  	}
  
  	// We use the formulation described in chapter 2, section 2.4,
  	// "The Yacas Book of Algorithms":
  	// http://yacas.sourceforge.net/Algo.book.pdf
  
  	var a, b, c Int
  	a.Set(x)
  	b.Set(y)
  	j := 1
  
  	if b.neg {
  		if a.neg {
  			j = -1
  		}
  		b.neg = false
  	}
  
  	for {
  		if b.Cmp(intOne) == 0 {
  			return j
  		}
  		if len(a.abs) == 0 {
  			return 0
  		}
  		a.Mod(&a, &b)
  		if len(a.abs) == 0 {
  			return 0
  		}
  		// a > 0
  
  		// handle factors of 2 in 'a'
  		s := a.abs.trailingZeroBits()
  		if s&1 != 0 {
  			bmod8 := b.abs[0] & 7
  			if bmod8 == 3 || bmod8 == 5 {
  				j = -j
  			}
  		}
  		c.Rsh(&a, s) // a = 2^s*c
  
  		// swap numerator and denominator
  		if b.abs[0]&3 == 3 && c.abs[0]&3 == 3 {
  			j = -j
  		}
  		a.Set(&b)
  		b.Set(&c)
  	}
  }
  
  // modSqrt3Mod4 uses the identity
  //      (a^((p+1)/4))^2  mod p
  //   == u^(p+1)          mod p
  //   == u^2              mod p
  // to calculate the square root of any quadratic residue mod p quickly for 3
  // mod 4 primes.
  func (z *Int) modSqrt3Mod4Prime(x, p *Int) *Int {
  	z.Set(p)         // z = p
  	z.Add(z, intOne) // z = p + 1
  	z.Rsh(z, 2)      // z = (p + 1) / 4
  	z.Exp(x, z, p)   // z = x^z mod p
  	return z
  }
  
  // modSqrtTonelliShanks uses the Tonelli-Shanks algorithm to find the square
  // root of a quadratic residue modulo any prime.
  func (z *Int) modSqrtTonelliShanks(x, p *Int) *Int {
  	// Break p-1 into s*2^e such that s is odd.
  	var s Int
  	s.Sub(p, intOne)
  	e := s.abs.trailingZeroBits()
  	s.Rsh(&s, e)
  
  	// find some non-square n
  	var n Int
  	n.SetInt64(2)
  	for Jacobi(&n, p) != -1 {
  		n.Add(&n, intOne)
  	}
  
  	// Core of the Tonelli-Shanks algorithm. Follows the description in
  	// section 6 of "Square roots from 1; 24, 51, 10 to Dan Shanks" by Ezra
  	// Brown:
  	// https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf
  	var y, b, g, t Int
  	y.Add(&s, intOne)
  	y.Rsh(&y, 1)
  	y.Exp(x, &y, p)  // y = x^((s+1)/2)
  	b.Exp(x, &s, p)  // b = x^s
  	g.Exp(&n, &s, p) // g = n^s
  	r := e
  	for {
  		// find the least m such that ord_p(b) = 2^m
  		var m uint
  		t.Set(&b)
  		for t.Cmp(intOne) != 0 {
  			t.Mul(&t, &t).Mod(&t, p)
  			m++
  		}
  
  		if m == 0 {
  			return z.Set(&y)
  		}
  
  		t.SetInt64(0).SetBit(&t, int(r-m-1), 1).Exp(&g, &t, p)
  		// t = g^(2^(r-m-1)) mod p
  		g.Mul(&t, &t).Mod(&g, p) // g = g^(2^(r-m)) mod p
  		y.Mul(&y, &t).Mod(&y, p)
  		b.Mul(&b, &g).Mod(&b, p)
  		r = m
  	}
  }
  
  // ModSqrt sets z to a square root of x mod p if such a square root exists, and
  // returns z. The modulus p must be an odd prime. If x is not a square mod p,
  // ModSqrt leaves z unchanged and returns nil. This function panics if p is
  // not an odd integer.
  func (z *Int) ModSqrt(x, p *Int) *Int {
  	switch Jacobi(x, p) {
  	case -1:
  		return nil // x is not a square mod p
  	case 0:
  		return z.SetInt64(0) // sqrt(0) mod p = 0
  	case 1:
  		break
  	}
  	if x.neg || x.Cmp(p) >= 0 { // ensure 0 <= x < p
  		x = new(Int).Mod(x, p)
  	}
  
  	// Check whether p is 3 mod 4, and if so, use the faster algorithm.
  	if len(p.abs) > 0 && p.abs[0]%4 == 3 {
  		return z.modSqrt3Mod4Prime(x, p)
  	}
  	// Otherwise, use Tonelli-Shanks.
  	return z.modSqrtTonelliShanks(x, p)
  }
  
  // Lsh sets z = x << n and returns z.
  func (z *Int) Lsh(x *Int, n uint) *Int {
  	z.abs = z.abs.shl(x.abs, n)
  	z.neg = x.neg
  	return z
  }
  
  // Rsh sets z = x >> n and returns z.
  func (z *Int) Rsh(x *Int, n uint) *Int {
  	if x.neg {
  		// (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)
  		t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0
  		t = t.shr(t, n)
  		z.abs = t.add(t, natOne)
  		z.neg = true // z cannot be zero if x is negative
  		return z
  	}
  
  	z.abs = z.abs.shr(x.abs, n)
  	z.neg = false
  	return z
  }
  
  // Bit returns the value of the i'th bit of x. That is, it
  // returns (x>>i)&1. The bit index i must be >= 0.
  func (x *Int) Bit(i int) uint {
  	if i == 0 {
  		// optimization for common case: odd/even test of x
  		if len(x.abs) > 0 {
  			return uint(x.abs[0] & 1) // bit 0 is same for -x
  		}
  		return 0
  	}
  	if i < 0 {
  		panic("negative bit index")
  	}
  	if x.neg {
  		t := nat(nil).sub(x.abs, natOne)
  		return t.bit(uint(i)) ^ 1
  	}
  
  	return x.abs.bit(uint(i))
  }
  
  // SetBit sets z to x, with x's i'th bit set to b (0 or 1).
  // That is, if b is 1 SetBit sets z = x | (1 << i);
  // if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1,
  // SetBit will panic.
  func (z *Int) SetBit(x *Int, i int, b uint) *Int {
  	if i < 0 {
  		panic("negative bit index")
  	}
  	if x.neg {
  		t := z.abs.sub(x.abs, natOne)
  		t = t.setBit(t, uint(i), b^1)
  		z.abs = t.add(t, natOne)
  		z.neg = len(z.abs) > 0
  		return z
  	}
  	z.abs = z.abs.setBit(x.abs, uint(i), b)
  	z.neg = false
  	return z
  }
  
  // And sets z = x & y and returns z.
  func (z *Int) And(x, y *Int) *Int {
  	if x.neg == y.neg {
  		if x.neg {
  			// (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
  			x1 := nat(nil).sub(x.abs, natOne)
  			y1 := nat(nil).sub(y.abs, natOne)
  			z.abs = z.abs.add(z.abs.or(x1, y1), natOne)
  			z.neg = true // z cannot be zero if x and y are negative
  			return z
  		}
  
  		// x & y == x & y
  		z.abs = z.abs.and(x.abs, y.abs)
  		z.neg = false
  		return z
  	}
  
  	// x.neg != y.neg
  	if x.neg {
  		x, y = y, x // & is symmetric
  	}
  
  	// x & (-y) == x & ^(y-1) == x &^ (y-1)
  	y1 := nat(nil).sub(y.abs, natOne)
  	z.abs = z.abs.andNot(x.abs, y1)
  	z.neg = false
  	return z
  }
  
  // AndNot sets z = x &^ y and returns z.
  func (z *Int) AndNot(x, y *Int) *Int {
  	if x.neg == y.neg {
  		if x.neg {
  			// (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)
  			x1 := nat(nil).sub(x.abs, natOne)
  			y1 := nat(nil).sub(y.abs, natOne)
  			z.abs = z.abs.andNot(y1, x1)
  			z.neg = false
  			return z
  		}
  
  		// x &^ y == x &^ y
  		z.abs = z.abs.andNot(x.abs, y.abs)
  		z.neg = false
  		return z
  	}
  
  	if x.neg {
  		// (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)
  		x1 := nat(nil).sub(x.abs, natOne)
  		z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne)
  		z.neg = true // z cannot be zero if x is negative and y is positive
  		return z
  	}
  
  	// x &^ (-y) == x &^ ^(y-1) == x & (y-1)
  	y1 := nat(nil).sub(y.abs, natOne)
  	z.abs = z.abs.and(x.abs, y1)
  	z.neg = false
  	return z
  }
  
  // Or sets z = x | y and returns z.
  func (z *Int) Or(x, y *Int) *Int {
  	if x.neg == y.neg {
  		if x.neg {
  			// (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
  			x1 := nat(nil).sub(x.abs, natOne)
  			y1 := nat(nil).sub(y.abs, natOne)
  			z.abs = z.abs.add(z.abs.and(x1, y1), natOne)
  			z.neg = true // z cannot be zero if x and y are negative
  			return z
  		}
  
  		// x | y == x | y
  		z.abs = z.abs.or(x.abs, y.abs)
  		z.neg = false
  		return z
  	}
  
  	// x.neg != y.neg
  	if x.neg {
  		x, y = y, x // | is symmetric
  	}
  
  	// x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
  	y1 := nat(nil).sub(y.abs, natOne)
  	z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne)
  	z.neg = true // z cannot be zero if one of x or y is negative
  	return z
  }
  
  // Xor sets z = x ^ y and returns z.
  func (z *Int) Xor(x, y *Int) *Int {
  	if x.neg == y.neg {
  		if x.neg {
  			// (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)
  			x1 := nat(nil).sub(x.abs, natOne)
  			y1 := nat(nil).sub(y.abs, natOne)
  			z.abs = z.abs.xor(x1, y1)
  			z.neg = false
  			return z
  		}
  
  		// x ^ y == x ^ y
  		z.abs = z.abs.xor(x.abs, y.abs)
  		z.neg = false
  		return z
  	}
  
  	// x.neg != y.neg
  	if x.neg {
  		x, y = y, x // ^ is symmetric
  	}
  
  	// x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)
  	y1 := nat(nil).sub(y.abs, natOne)
  	z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne)
  	z.neg = true // z cannot be zero if only one of x or y is negative
  	return z
  }
  
  // Not sets z = ^x and returns z.
  func (z *Int) Not(x *Int) *Int {
  	if x.neg {
  		// ^(-x) == ^(^(x-1)) == x-1
  		z.abs = z.abs.sub(x.abs, natOne)
  		z.neg = false
  		return z
  	}
  
  	// ^x == -x-1 == -(x+1)
  	z.abs = z.abs.add(x.abs, natOne)
  	z.neg = true // z cannot be zero if x is positive
  	return z
  }
  
  // Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z.
  // It panics if x is negative.
  func (z *Int) Sqrt(x *Int) *Int {
  	if x.neg {
  		panic("square root of negative number")
  	}
  	z.neg = false
  	z.abs = z.abs.sqrt(x.abs)
  	return z
  }
  

View as plain text