// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package reflectlite implements lightweight version of reflect, not using // any package except for "runtime", "unsafe", and "internal/abi" package reflectlite import ( "internal/abi" "unsafe" ) // Type is the representation of a Go type. // // Not all methods apply to all kinds of types. Restrictions, // if any, are noted in the documentation for each method. // Use the Kind method to find out the kind of type before // calling kind-specific methods. Calling a method // inappropriate to the kind of type causes a run-time panic. // // Type values are comparable, such as with the == operator, // so they can be used as map keys. // Two Type values are equal if they represent identical types. type Type interface { // Methods applicable to all types. // Name returns the type's name within its package for a defined type. // For other (non-defined) types it returns the empty string. Name() string // PkgPath returns a defined type's package path, that is, the import path // that uniquely identifies the package, such as "encoding/base64". // If the type was predeclared (string, error) or not defined (*T, struct{}, // []int, or A where A is an alias for a non-defined type), the package path // will be the empty string. PkgPath() string // Size returns the number of bytes needed to store // a value of the given type; it is analogous to unsafe.Sizeof. Size() uintptr // Kind returns the specific kind of this type. Kind() Kind // Implements reports whether the type implements the interface type u. Implements(u Type) bool // AssignableTo reports whether a value of the type is assignable to type u. AssignableTo(u Type) bool // Comparable reports whether values of this type are comparable. Comparable() bool // String returns a string representation of the type. // The string representation may use shortened package names // (e.g., base64 instead of "encoding/base64") and is not // guaranteed to be unique among types. To test for type identity, // compare the Types directly. String() string // Elem returns a type's element type. // It panics if the type's Kind is not Ptr. Elem() Type common() *abi.Type uncommon() *uncommonType } /* * These data structures are known to the compiler (../../cmd/internal/reflectdata/reflect.go). * A few are known to ../runtime/type.go to convey to debuggers. * They are also known to ../runtime/type.go. */ // A Kind represents the specific kind of type that a Type represents. // The zero Kind is not a valid kind. type Kind = abi.Kind const Ptr = abi.Pointer const ( // Import-and-export these constants as necessary Interface = abi.Interface Slice = abi.Slice String = abi.String Struct = abi.Struct ) type nameOff = abi.NameOff type typeOff = abi.TypeOff type textOff = abi.TextOff type rtype struct { *abi.Type } // uncommonType is present only for defined types or types with methods // (if T is a defined type, the uncommonTypes for T and *T have methods). // Using a pointer to this struct reduces the overall size required // to describe a non-defined type with no methods. type uncommonType = abi.UncommonType // arrayType represents a fixed array type. type arrayType = abi.ArrayType // chanType represents a channel type. type chanType = abi.ChanType type funcType = abi.FuncType type interfaceType = abi.InterfaceType // mapType represents a map type. type mapType struct { rtype Key *abi.Type // map key type Elem *abi.Type // map element (value) type Bucket *abi.Type // internal bucket structure // function for hashing keys (ptr to key, seed) -> hash Hasher func(unsafe.Pointer, uintptr) uintptr KeySize uint8 // size of key slot ValueSize uint8 // size of value slot BucketSize uint16 // size of bucket Flags uint32 } // ptrType represents a pointer type. type ptrType = abi.PtrType // sliceType represents a slice type. type sliceType = abi.SliceType // structType represents a struct type. type structType = abi.StructType // name is an encoded type name with optional extra data. // // The first byte is a bit field containing: // // 1<<0 the name is exported // 1<<1 tag data follows the name // 1<<2 pkgPath nameOff follows the name and tag // // The next two bytes are the data length: // // l := uint16(data[1])<<8 | uint16(data[2]) // // Bytes [3:3+l] are the string data. // // If tag data follows then bytes 3+l and 3+l+1 are the tag length, // with the data following. // // If the import path follows, then 4 bytes at the end of // the data form a nameOff. The import path is only set for concrete // methods that are defined in a different package than their type. // // If a name starts with "*", then the exported bit represents // whether the pointed to type is exported. type name struct { bytes *byte } func (n name) data(off int, whySafe string) *byte { return (*byte)(add(unsafe.Pointer(n.bytes), uintptr(off), whySafe)) } func (n name) isExported() bool { return (*n.bytes)&(1<<0) != 0 } func (n name) hasTag() bool { return (*n.bytes)&(1<<1) != 0 } func (n name) embedded() bool { return (*n.bytes)&(1<<3) != 0 } // readVarint parses a varint as encoded by encoding/binary. // It returns the number of encoded bytes and the encoded value. func (n name) readVarint(off int) (int, int) { v := 0 for i := 0; ; i++ { x := *n.data(off+i, "read varint") v += int(x&0x7f) << (7 * i) if x&0x80 == 0 { return i + 1, v } } } func (n name) name() string { if n.bytes == nil { return "" } i, l := n.readVarint(1) return unsafe.String(n.data(1+i, "non-empty string"), l) } func (n name) tag() string { if !n.hasTag() { return "" } i, l := n.readVarint(1) i2, l2 := n.readVarint(1 + i + l) return unsafe.String(n.data(1+i+l+i2, "non-empty string"), l2) } func pkgPath(n abi.Name) string { if n.Bytes == nil || *n.DataChecked(0, "name flag field")&(1<<2) == 0 { return "" } i, l := n.ReadVarint(1) off := 1 + i + l if n.HasTag() { i2, l2 := n.ReadVarint(off) off += i2 + l2 } var nameOff int32 // Note that this field may not be aligned in memory, // so we cannot use a direct int32 assignment here. copy((*[4]byte)(unsafe.Pointer(&nameOff))[:], (*[4]byte)(unsafe.Pointer(n.DataChecked(off, "name offset field")))[:]) pkgPathName := name{(*byte)(resolveTypeOff(unsafe.Pointer(n.Bytes), nameOff))} return pkgPathName.name() } /* * The compiler knows the exact layout of all the data structures above. * The compiler does not know about the data structures and methods below. */ // resolveNameOff resolves a name offset from a base pointer. // The (*rtype).nameOff method is a convenience wrapper for this function. // Implemented in the runtime package. // //go:noescape func resolveNameOff(ptrInModule unsafe.Pointer, off int32) unsafe.Pointer // resolveTypeOff resolves an *rtype offset from a base type. // The (*rtype).typeOff method is a convenience wrapper for this function. // Implemented in the runtime package. // //go:noescape func resolveTypeOff(rtype unsafe.Pointer, off int32) unsafe.Pointer func (t rtype) nameOff(off nameOff) abi.Name { return abi.Name{Bytes: (*byte)(resolveNameOff(unsafe.Pointer(t.Type), int32(off)))} } func (t rtype) typeOff(off typeOff) *abi.Type { return (*abi.Type)(resolveTypeOff(unsafe.Pointer(t.Type), int32(off))) } func (t rtype) uncommon() *uncommonType { return t.Uncommon() } func (t rtype) String() string { s := t.nameOff(t.Str).Name() if t.TFlag&abi.TFlagExtraStar != 0 { return s[1:] } return s } func (t rtype) common() *abi.Type { return t.Type } func (t rtype) exportedMethods() []abi.Method { ut := t.uncommon() if ut == nil { return nil } return ut.ExportedMethods() } func (t rtype) NumMethod() int { tt := t.Type.InterfaceType() if tt != nil { return tt.NumMethod() } return len(t.exportedMethods()) } func (t rtype) PkgPath() string { if t.TFlag&abi.TFlagNamed == 0 { return "" } ut := t.uncommon() if ut == nil { return "" } return t.nameOff(ut.PkgPath).Name() } func (t rtype) Name() string { if !t.HasName() { return "" } s := t.String() i := len(s) - 1 sqBrackets := 0 for i >= 0 && (s[i] != '.' || sqBrackets != 0) { switch s[i] { case ']': sqBrackets++ case '[': sqBrackets-- } i-- } return s[i+1:] } func toRType(t *abi.Type) rtype { return rtype{t} } func elem(t *abi.Type) *abi.Type { et := t.Elem() if et != nil { return et } panic("reflect: Elem of invalid type " + toRType(t).String()) } func (t rtype) Elem() Type { return toType(elem(t.common())) } func (t rtype) In(i int) Type { tt := t.Type.FuncType() if tt == nil { panic("reflect: In of non-func type") } return toType(tt.InSlice()[i]) } func (t rtype) Key() Type { tt := t.Type.MapType() if tt == nil { panic("reflect: Key of non-map type") } return toType(tt.Key) } func (t rtype) Len() int { tt := t.Type.ArrayType() if tt == nil { panic("reflect: Len of non-array type") } return int(tt.Len) } func (t rtype) NumField() int { tt := t.Type.StructType() if tt == nil { panic("reflect: NumField of non-struct type") } return len(tt.Fields) } func (t rtype) NumIn() int { tt := t.Type.FuncType() if tt == nil { panic("reflect: NumIn of non-func type") } return int(tt.InCount) } func (t rtype) NumOut() int { tt := t.Type.FuncType() if tt == nil { panic("reflect: NumOut of non-func type") } return tt.NumOut() } func (t rtype) Out(i int) Type { tt := t.Type.FuncType() if tt == nil { panic("reflect: Out of non-func type") } return toType(tt.OutSlice()[i]) } // add returns p+x. // // The whySafe string is ignored, so that the function still inlines // as efficiently as p+x, but all call sites should use the string to // record why the addition is safe, which is to say why the addition // does not cause x to advance to the very end of p's allocation // and therefore point incorrectly at the next block in memory. func add(p unsafe.Pointer, x uintptr, whySafe string) unsafe.Pointer { return unsafe.Pointer(uintptr(p) + x) } // TypeOf returns the reflection Type that represents the dynamic type of i. // If i is a nil interface value, TypeOf returns nil. func TypeOf(i any) Type { eface := *(*emptyInterface)(unsafe.Pointer(&i)) // Noescape so this doesn't make i to escape. See the comment // at Value.typ for why this is safe. return toType((*abi.Type)(noescape(unsafe.Pointer(eface.typ)))) } func (t rtype) Implements(u Type) bool { if u == nil { panic("reflect: nil type passed to Type.Implements") } if u.Kind() != Interface { panic("reflect: non-interface type passed to Type.Implements") } return implements(u.common(), t.common()) } func (t rtype) AssignableTo(u Type) bool { if u == nil { panic("reflect: nil type passed to Type.AssignableTo") } uu := u.common() tt := t.common() return directlyAssignable(uu, tt) || implements(uu, tt) } func (t rtype) Comparable() bool { return t.Equal != nil } // implements reports whether the type V implements the interface type T. func implements(T, V *abi.Type) bool { t := T.InterfaceType() if t == nil { return false } if len(t.Methods) == 0 { return true } rT := toRType(T) rV := toRType(V) // The same algorithm applies in both cases, but the // method tables for an interface type and a concrete type // are different, so the code is duplicated. // In both cases the algorithm is a linear scan over the two // lists - T's methods and V's methods - simultaneously. // Since method tables are stored in a unique sorted order // (alphabetical, with no duplicate method names), the scan // through V's methods must hit a match for each of T's // methods along the way, or else V does not implement T. // This lets us run the scan in overall linear time instead of // the quadratic time a naive search would require. // See also ../runtime/iface.go. if V.Kind() == Interface { v := (*interfaceType)(unsafe.Pointer(V)) i := 0 for j := 0; j < len(v.Methods); j++ { tm := &t.Methods[i] tmName := rT.nameOff(tm.Name) vm := &v.Methods[j] vmName := rV.nameOff(vm.Name) if vmName.Name() == tmName.Name() && rV.typeOff(vm.Typ) == rT.typeOff(tm.Typ) { if !tmName.IsExported() { tmPkgPath := pkgPath(tmName) if tmPkgPath == "" { tmPkgPath = t.PkgPath.Name() } vmPkgPath := pkgPath(vmName) if vmPkgPath == "" { vmPkgPath = v.PkgPath.Name() } if tmPkgPath != vmPkgPath { continue } } if i++; i >= len(t.Methods) { return true } } } return false } v := V.Uncommon() if v == nil { return false } i := 0 vmethods := v.Methods() for j := 0; j < int(v.Mcount); j++ { tm := &t.Methods[i] tmName := rT.nameOff(tm.Name) vm := vmethods[j] vmName := rV.nameOff(vm.Name) if vmName.Name() == tmName.Name() && rV.typeOff(vm.Mtyp) == rT.typeOff(tm.Typ) { if !tmName.IsExported() { tmPkgPath := pkgPath(tmName) if tmPkgPath == "" { tmPkgPath = t.PkgPath.Name() } vmPkgPath := pkgPath(vmName) if vmPkgPath == "" { vmPkgPath = rV.nameOff(v.PkgPath).Name() } if tmPkgPath != vmPkgPath { continue } } if i++; i >= len(t.Methods) { return true } } } return false } // directlyAssignable reports whether a value x of type V can be directly // assigned (using memmove) to a value of type T. // https://golang.org/doc/go_spec.html#Assignability // Ignoring the interface rules (implemented elsewhere) // and the ideal constant rules (no ideal constants at run time). func directlyAssignable(T, V *abi.Type) bool { // x's type V is identical to T? if T == V { return true } // Otherwise at least one of T and V must not be defined // and they must have the same kind. if T.HasName() && V.HasName() || T.Kind() != V.Kind() { return false } // x's type T and V must have identical underlying types. return haveIdenticalUnderlyingType(T, V, true) } func haveIdenticalType(T, V *abi.Type, cmpTags bool) bool { if cmpTags { return T == V } if toRType(T).Name() != toRType(V).Name() || T.Kind() != V.Kind() { return false } return haveIdenticalUnderlyingType(T, V, false) } func haveIdenticalUnderlyingType(T, V *abi.Type, cmpTags bool) bool { if T == V { return true } kind := T.Kind() if kind != V.Kind() { return false } // Non-composite types of equal kind have same underlying type // (the predefined instance of the type). if abi.Bool <= kind && kind <= abi.Complex128 || kind == abi.String || kind == abi.UnsafePointer { return true } // Composite types. switch kind { case abi.Array: return T.Len() == V.Len() && haveIdenticalType(T.Elem(), V.Elem(), cmpTags) case abi.Chan: // Special case: // x is a bidirectional channel value, T is a channel type, // and x's type V and T have identical element types. if V.ChanDir() == abi.BothDir && haveIdenticalType(T.Elem(), V.Elem(), cmpTags) { return true } // Otherwise continue test for identical underlying type. return V.ChanDir() == T.ChanDir() && haveIdenticalType(T.Elem(), V.Elem(), cmpTags) case abi.Func: t := (*funcType)(unsafe.Pointer(T)) v := (*funcType)(unsafe.Pointer(V)) if t.OutCount != v.OutCount || t.InCount != v.InCount { return false } for i := 0; i < t.NumIn(); i++ { if !haveIdenticalType(t.In(i), v.In(i), cmpTags) { return false } } for i := 0; i < t.NumOut(); i++ { if !haveIdenticalType(t.Out(i), v.Out(i), cmpTags) { return false } } return true case Interface: t := (*interfaceType)(unsafe.Pointer(T)) v := (*interfaceType)(unsafe.Pointer(V)) if len(t.Methods) == 0 && len(v.Methods) == 0 { return true } // Might have the same methods but still // need a run time conversion. return false case abi.Map: return haveIdenticalType(T.Key(), V.Key(), cmpTags) && haveIdenticalType(T.Elem(), V.Elem(), cmpTags) case Ptr, abi.Slice: return haveIdenticalType(T.Elem(), V.Elem(), cmpTags) case abi.Struct: t := (*structType)(unsafe.Pointer(T)) v := (*structType)(unsafe.Pointer(V)) if len(t.Fields) != len(v.Fields) { return false } if t.PkgPath.Name() != v.PkgPath.Name() { return false } for i := range t.Fields { tf := &t.Fields[i] vf := &v.Fields[i] if tf.Name.Name() != vf.Name.Name() { return false } if !haveIdenticalType(tf.Typ, vf.Typ, cmpTags) { return false } if cmpTags && tf.Name.Tag() != vf.Name.Tag() { return false } if tf.Offset != vf.Offset { return false } if tf.Embedded() != vf.Embedded() { return false } } return true } return false } // toType converts from a *rtype to a Type that can be returned // to the client of package reflect. In gc, the only concern is that // a nil *rtype must be replaced by a nil Type, but in gccgo this // function takes care of ensuring that multiple *rtype for the same // type are coalesced into a single Type. func toType(t *abi.Type) Type { if t == nil { return nil } return toRType(t) } // ifaceIndir reports whether t is stored indirectly in an interface value. func ifaceIndir(t *abi.Type) bool { return t.Kind_&abi.KindDirectIface == 0 }