// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package jpeg import ( "bytes" "fmt" "image" "image/color" "image/png" "io" "math/rand" "os" "strings" "testing" ) // zigzag maps from the natural ordering to the zig-zag ordering. For example, // zigzag[0*8 + 3] is the zig-zag sequence number of the element in the fourth // column and first row. var zigzag = [blockSize]int{ 0, 1, 5, 6, 14, 15, 27, 28, 2, 4, 7, 13, 16, 26, 29, 42, 3, 8, 12, 17, 25, 30, 41, 43, 9, 11, 18, 24, 31, 40, 44, 53, 10, 19, 23, 32, 39, 45, 52, 54, 20, 22, 33, 38, 46, 51, 55, 60, 21, 34, 37, 47, 50, 56, 59, 61, 35, 36, 48, 49, 57, 58, 62, 63, } func TestZigUnzig(t *testing.T) { for i := 0; i < blockSize; i++ { if unzig[zigzag[i]] != i { t.Errorf("unzig[zigzag[%d]] == %d", i, unzig[zigzag[i]]) } if zigzag[unzig[i]] != i { t.Errorf("zigzag[unzig[%d]] == %d", i, zigzag[unzig[i]]) } } } // unscaledQuantInNaturalOrder are the unscaled quantization tables in // natural (not zig-zag) order, as specified in section K.1. var unscaledQuantInNaturalOrder = [nQuantIndex][blockSize]byte{ // Luminance. { 16, 11, 10, 16, 24, 40, 51, 61, 12, 12, 14, 19, 26, 58, 60, 55, 14, 13, 16, 24, 40, 57, 69, 56, 14, 17, 22, 29, 51, 87, 80, 62, 18, 22, 37, 56, 68, 109, 103, 77, 24, 35, 55, 64, 81, 104, 113, 92, 49, 64, 78, 87, 103, 121, 120, 101, 72, 92, 95, 98, 112, 100, 103, 99, }, // Chrominance. { 17, 18, 24, 47, 99, 99, 99, 99, 18, 21, 26, 66, 99, 99, 99, 99, 24, 26, 56, 99, 99, 99, 99, 99, 47, 66, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, }, } func TestUnscaledQuant(t *testing.T) { bad := false for i := quantIndex(0); i < nQuantIndex; i++ { for zig := 0; zig < blockSize; zig++ { got := unscaledQuant[i][zig] want := unscaledQuantInNaturalOrder[i][unzig[zig]] if got != want { t.Errorf("i=%d, zig=%d: got %d, want %d", i, zig, got, want) bad = true } } } if bad { names := [nQuantIndex]string{"Luminance", "Chrominance"} buf := &strings.Builder{} for i, name := range names { fmt.Fprintf(buf, "// %s.\n{\n", name) for zig := 0; zig < blockSize; zig++ { fmt.Fprintf(buf, "%d, ", unscaledQuantInNaturalOrder[i][unzig[zig]]) if zig%8 == 7 { buf.WriteString("\n") } } buf.WriteString("},\n") } t.Logf("expected unscaledQuant values:\n%s", buf.String()) } } var testCase = []struct { filename string quality int tolerance int64 }{ {"../testdata/video-001.png", 1, 24 << 8}, {"../testdata/video-001.png", 20, 12 << 8}, {"../testdata/video-001.png", 60, 8 << 8}, {"../testdata/video-001.png", 80, 6 << 8}, {"../testdata/video-001.png", 90, 4 << 8}, {"../testdata/video-001.png", 100, 2 << 8}, } func delta(u0, u1 uint32) int64 { d := int64(u0) - int64(u1) if d < 0 { return -d } return d } func readPng(filename string) (image.Image, error) { f, err := os.Open(filename) if err != nil { return nil, err } defer f.Close() return png.Decode(f) } func TestWriter(t *testing.T) { for _, tc := range testCase { // Read the image. m0, err := readPng(tc.filename) if err != nil { t.Error(tc.filename, err) continue } // Encode that image as JPEG. var buf bytes.Buffer err = Encode(&buf, m0, &Options{Quality: tc.quality}) if err != nil { t.Error(tc.filename, err) continue } // Decode that JPEG. m1, err := Decode(&buf) if err != nil { t.Error(tc.filename, err) continue } if m0.Bounds() != m1.Bounds() { t.Errorf("%s, bounds differ: %v and %v", tc.filename, m0.Bounds(), m1.Bounds()) continue } // Compare the average delta to the tolerance level. if averageDelta(m0, m1) > tc.tolerance { t.Errorf("%s, quality=%d: average delta is too high", tc.filename, tc.quality) continue } } } // TestWriteGrayscale tests that a grayscale images survives a round-trip // through encode/decode cycle. func TestWriteGrayscale(t *testing.T) { m0 := image.NewGray(image.Rect(0, 0, 32, 32)) for i := range m0.Pix { m0.Pix[i] = uint8(i) } var buf bytes.Buffer if err := Encode(&buf, m0, nil); err != nil { t.Fatal(err) } m1, err := Decode(&buf) if err != nil { t.Fatal(err) } if m0.Bounds() != m1.Bounds() { t.Fatalf("bounds differ: %v and %v", m0.Bounds(), m1.Bounds()) } if _, ok := m1.(*image.Gray); !ok { t.Errorf("got %T, want *image.Gray", m1) } // Compare the average delta to the tolerance level. want := int64(2 << 8) if got := averageDelta(m0, m1); got > want { t.Errorf("average delta too high; got %d, want <= %d", got, want) } } // averageDelta returns the average delta in RGB space. The two images must // have the same bounds. func averageDelta(m0, m1 image.Image) int64 { b := m0.Bounds() var sum, n int64 for y := b.Min.Y; y < b.Max.Y; y++ { for x := b.Min.X; x < b.Max.X; x++ { c0 := m0.At(x, y) c1 := m1.At(x, y) r0, g0, b0, _ := c0.RGBA() r1, g1, b1, _ := c1.RGBA() sum += delta(r0, r1) sum += delta(g0, g1) sum += delta(b0, b1) n += 3 } } return sum / n } func TestEncodeYCbCr(t *testing.T) { bo := image.Rect(0, 0, 640, 480) imgRGBA := image.NewRGBA(bo) // Must use 444 subsampling to avoid lossy RGBA to YCbCr conversion. imgYCbCr := image.NewYCbCr(bo, image.YCbCrSubsampleRatio444) rnd := rand.New(rand.NewSource(123)) // Create identical rgba and ycbcr images. for y := bo.Min.Y; y < bo.Max.Y; y++ { for x := bo.Min.X; x < bo.Max.X; x++ { col := color.RGBA{ uint8(rnd.Intn(256)), uint8(rnd.Intn(256)), uint8(rnd.Intn(256)), 255, } imgRGBA.SetRGBA(x, y, col) yo := imgYCbCr.YOffset(x, y) co := imgYCbCr.COffset(x, y) cy, ccr, ccb := color.RGBToYCbCr(col.R, col.G, col.B) imgYCbCr.Y[yo] = cy imgYCbCr.Cb[co] = ccr imgYCbCr.Cr[co] = ccb } } // Now check that both images are identical after an encode. var bufRGBA, bufYCbCr bytes.Buffer Encode(&bufRGBA, imgRGBA, nil) Encode(&bufYCbCr, imgYCbCr, nil) if !bytes.Equal(bufRGBA.Bytes(), bufYCbCr.Bytes()) { t.Errorf("RGBA and YCbCr encoded bytes differ") } } func BenchmarkEncodeRGBA(b *testing.B) { img := image.NewRGBA(image.Rect(0, 0, 640, 480)) bo := img.Bounds() rnd := rand.New(rand.NewSource(123)) for y := bo.Min.Y; y < bo.Max.Y; y++ { for x := bo.Min.X; x < bo.Max.X; x++ { img.SetRGBA(x, y, color.RGBA{ uint8(rnd.Intn(256)), uint8(rnd.Intn(256)), uint8(rnd.Intn(256)), 255, }) } } b.SetBytes(640 * 480 * 4) b.ReportAllocs() b.ResetTimer() options := &Options{Quality: 90} for i := 0; i < b.N; i++ { Encode(io.Discard, img, options) } } func BenchmarkEncodeYCbCr(b *testing.B) { img := image.NewYCbCr(image.Rect(0, 0, 640, 480), image.YCbCrSubsampleRatio420) bo := img.Bounds() rnd := rand.New(rand.NewSource(123)) for y := bo.Min.Y; y < bo.Max.Y; y++ { for x := bo.Min.X; x < bo.Max.X; x++ { cy := img.YOffset(x, y) ci := img.COffset(x, y) img.Y[cy] = uint8(rnd.Intn(256)) img.Cb[ci] = uint8(rnd.Intn(256)) img.Cr[ci] = uint8(rnd.Intn(256)) } } b.SetBytes(640 * 480 * 3) b.ReportAllocs() b.ResetTimer() options := &Options{Quality: 90} for i := 0; i < b.N; i++ { Encode(io.Discard, img, options) } }