// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package crc64 implements the 64-bit cyclic redundancy check, or CRC-64, // checksum. See https://en.wikipedia.org/wiki/Cyclic_redundancy_check for // information. package crc64 import ( "errors" "hash" "sync" ) // The size of a CRC-64 checksum in bytes. const Size = 8 // Predefined polynomials. const ( // The ISO polynomial, defined in ISO 3309 and used in HDLC. ISO = 0xD800000000000000 // The ECMA polynomial, defined in ECMA 182. ECMA = 0xC96C5795D7870F42 ) // Table is a 256-word table representing the polynomial for efficient processing. type Table [256]uint64 var ( slicing8TablesBuildOnce sync.Once slicing8TableISO *[8]Table slicing8TableECMA *[8]Table ) func buildSlicing8TablesOnce() { slicing8TablesBuildOnce.Do(buildSlicing8Tables) } func buildSlicing8Tables() { slicing8TableISO = makeSlicingBy8Table(makeTable(ISO)) slicing8TableECMA = makeSlicingBy8Table(makeTable(ECMA)) } // MakeTable returns a [Table] constructed from the specified polynomial. // The contents of this [Table] must not be modified. func MakeTable(poly uint64) *Table { buildSlicing8TablesOnce() switch poly { case ISO: return &slicing8TableISO[0] case ECMA: return &slicing8TableECMA[0] default: return makeTable(poly) } } func makeTable(poly uint64) *Table { t := new(Table) for i := 0; i < 256; i++ { crc := uint64(i) for j := 0; j < 8; j++ { if crc&1 == 1 { crc = (crc >> 1) ^ poly } else { crc >>= 1 } } t[i] = crc } return t } func makeSlicingBy8Table(t *Table) *[8]Table { var helperTable [8]Table helperTable[0] = *t for i := 0; i < 256; i++ { crc := t[i] for j := 1; j < 8; j++ { crc = t[crc&0xff] ^ (crc >> 8) helperTable[j][i] = crc } } return &helperTable } // digest represents the partial evaluation of a checksum. type digest struct { crc uint64 tab *Table } // New creates a new hash.Hash64 computing the CRC-64 checksum using the // polynomial represented by the [Table]. Its Sum method will lay the // value out in big-endian byte order. The returned Hash64 also // implements [encoding.BinaryMarshaler] and [encoding.BinaryUnmarshaler] to // marshal and unmarshal the internal state of the hash. func New(tab *Table) hash.Hash64 { return &digest{0, tab} } func (d *digest) Size() int { return Size } func (d *digest) BlockSize() int { return 1 } func (d *digest) Reset() { d.crc = 0 } const ( magic = "crc\x02" marshaledSize = len(magic) + 8 + 8 ) func (d *digest) MarshalBinary() ([]byte, error) { b := make([]byte, 0, marshaledSize) b = append(b, magic...) b = appendUint64(b, tableSum(d.tab)) b = appendUint64(b, d.crc) return b, nil } func (d *digest) UnmarshalBinary(b []byte) error { if len(b) < len(magic) || string(b[:len(magic)]) != magic { return errors.New("hash/crc64: invalid hash state identifier") } if len(b) != marshaledSize { return errors.New("hash/crc64: invalid hash state size") } if tableSum(d.tab) != readUint64(b[4:]) { return errors.New("hash/crc64: tables do not match") } d.crc = readUint64(b[12:]) return nil } // appendUint64 is semantically the same as [binary.BigEndian.AppendUint64] // We copied this function because we can not import "encoding/binary" here. func appendUint64(b []byte, x uint64) []byte { return append(b, byte(x>>56), byte(x>>48), byte(x>>40), byte(x>>32), byte(x>>24), byte(x>>16), byte(x>>8), byte(x), ) } // readUint64 is semantically the same as [binary.BigEndian.Uint64] // We copied this function because we can not import "encoding/binary" here. func readUint64(b []byte) uint64 { _ = b[7] return uint64(b[7]) | uint64(b[6])<<8 | uint64(b[5])<<16 | uint64(b[4])<<24 | uint64(b[3])<<32 | uint64(b[2])<<40 | uint64(b[1])<<48 | uint64(b[0])<<56 } func update(crc uint64, tab *Table, p []byte) uint64 { buildSlicing8TablesOnce() crc = ^crc // Table comparison is somewhat expensive, so avoid it for small sizes for len(p) >= 64 { var helperTable *[8]Table if *tab == slicing8TableECMA[0] { helperTable = slicing8TableECMA } else if *tab == slicing8TableISO[0] { helperTable = slicing8TableISO // For smaller sizes creating extended table takes too much time } else if len(p) >= 2048 { // According to the tests between various x86 and arm CPUs, 2k is a reasonable // threshold for now. This may change in the future. helperTable = makeSlicingBy8Table(tab) } else { break } // Update using slicing-by-8 for len(p) > 8 { crc ^= uint64(p[0]) | uint64(p[1])<<8 | uint64(p[2])<<16 | uint64(p[3])<<24 | uint64(p[4])<<32 | uint64(p[5])<<40 | uint64(p[6])<<48 | uint64(p[7])<<56 crc = helperTable[7][crc&0xff] ^ helperTable[6][(crc>>8)&0xff] ^ helperTable[5][(crc>>16)&0xff] ^ helperTable[4][(crc>>24)&0xff] ^ helperTable[3][(crc>>32)&0xff] ^ helperTable[2][(crc>>40)&0xff] ^ helperTable[1][(crc>>48)&0xff] ^ helperTable[0][crc>>56] p = p[8:] } } // For reminders or small sizes for _, v := range p { crc = tab[byte(crc)^v] ^ (crc >> 8) } return ^crc } // Update returns the result of adding the bytes in p to the crc. func Update(crc uint64, tab *Table, p []byte) uint64 { return update(crc, tab, p) } func (d *digest) Write(p []byte) (n int, err error) { d.crc = update(d.crc, d.tab, p) return len(p), nil } func (d *digest) Sum64() uint64 { return d.crc } func (d *digest) Sum(in []byte) []byte { s := d.Sum64() return append(in, byte(s>>56), byte(s>>48), byte(s>>40), byte(s>>32), byte(s>>24), byte(s>>16), byte(s>>8), byte(s)) } // Checksum returns the CRC-64 checksum of data // using the polynomial represented by the [Table]. func Checksum(data []byte, tab *Table) uint64 { return update(0, tab, data) } // tableSum returns the ISO checksum of table t. func tableSum(t *Table) uint64 { var a [2048]byte b := a[:0] if t != nil { for _, x := range t { b = appendUint64(b, x) } } return Checksum(b, MakeTable(ISO)) }