// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package fmt import ( "strconv" "unicode/utf8" ) const ( ldigits = "0123456789abcdefx" udigits = "0123456789ABCDEFX" ) const ( signed = true unsigned = false ) // flags placed in a separate struct for easy clearing. type fmtFlags struct { widPresent bool precPresent bool minus bool plus bool sharp bool space bool zero bool // For the formats %+v %#v, we set the plusV/sharpV flags // and clear the plus/sharp flags since %+v and %#v are in effect // different, flagless formats set at the top level. plusV bool sharpV bool } // A fmt is the raw formatter used by Printf etc. // It prints into a buffer that must be set up separately. type fmt struct { buf *buffer fmtFlags wid int // width prec int // precision // intbuf is large enough to store %b of an int64 with a sign and // avoids padding at the end of the struct on 32 bit architectures. intbuf [68]byte } func (f *fmt) clearflags() { f.fmtFlags = fmtFlags{} } func (f *fmt) init(buf *buffer) { f.buf = buf f.clearflags() } // writePadding generates n bytes of padding. func (f *fmt) writePadding(n int) { if n <= 0 { // No padding bytes needed. return } buf := *f.buf oldLen := len(buf) newLen := oldLen + n // Make enough room for padding. if newLen > cap(buf) { buf = make(buffer, cap(buf)*2+n) copy(buf, *f.buf) } // Decide which byte the padding should be filled with. padByte := byte(' ') if f.zero { padByte = byte('0') } // Fill padding with padByte. padding := buf[oldLen:newLen] for i := range padding { padding[i] = padByte } *f.buf = buf[:newLen] } // pad appends b to f.buf, padded on left (!f.minus) or right (f.minus). func (f *fmt) pad(b []byte) { if !f.widPresent || f.wid == 0 { f.buf.write(b) return } width := f.wid - utf8.RuneCount(b) if !f.minus { // left padding f.writePadding(width) f.buf.write(b) } else { // right padding f.buf.write(b) f.writePadding(width) } } // padString appends s to f.buf, padded on left (!f.minus) or right (f.minus). func (f *fmt) padString(s string) { if !f.widPresent || f.wid == 0 { f.buf.writeString(s) return } width := f.wid - utf8.RuneCountInString(s) if !f.minus { // left padding f.writePadding(width) f.buf.writeString(s) } else { // right padding f.buf.writeString(s) f.writePadding(width) } } // fmtBoolean formats a boolean. func (f *fmt) fmtBoolean(v bool) { if v { f.padString("true") } else { f.padString("false") } } // fmtUnicode formats a uint64 as "U+0078" or with f.sharp set as "U+0078 'x'". func (f *fmt) fmtUnicode(u uint64) { buf := f.intbuf[0:] // With default precision set the maximum needed buf length is 18 // for formatting -1 with %#U ("U+FFFFFFFFFFFFFFFF") which fits // into the already allocated intbuf with a capacity of 68 bytes. prec := 4 if f.precPresent && f.prec > 4 { prec = f.prec // Compute space needed for "U+" , number, " '", character, "'". width := 2 + prec + 2 + utf8.UTFMax + 1 if width > len(buf) { buf = make([]byte, width) } } // Format into buf, ending at buf[i]. Formatting numbers is easier right-to-left. i := len(buf) // For %#U we want to add a space and a quoted character at the end of the buffer. if f.sharp && u <= utf8.MaxRune && strconv.IsPrint(rune(u)) { i-- buf[i] = '\'' i -= utf8.RuneLen(rune(u)) utf8.EncodeRune(buf[i:], rune(u)) i-- buf[i] = '\'' i-- buf[i] = ' ' } // Format the Unicode code point u as a hexadecimal number. for u >= 16 { i-- buf[i] = udigits[u&0xF] prec-- u >>= 4 } i-- buf[i] = udigits[u] prec-- // Add zeros in front of the number until requested precision is reached. for prec > 0 { i-- buf[i] = '0' prec-- } // Add a leading "U+". i-- buf[i] = '+' i-- buf[i] = 'U' oldZero := f.zero f.zero = false f.pad(buf[i:]) f.zero = oldZero } // fmtInteger formats signed and unsigned integers. func (f *fmt) fmtInteger(u uint64, base int, isSigned bool, verb rune, digits string) { negative := isSigned && int64(u) < 0 if negative { u = -u } buf := f.intbuf[0:] // The already allocated f.intbuf with a capacity of 68 bytes // is large enough for integer formatting when no precision or width is set. if f.widPresent || f.precPresent { // Account 3 extra bytes for possible addition of a sign and "0x". width := 3 + f.wid + f.prec // wid and prec are always positive. if width > len(buf) { // We're going to need a bigger boat. buf = make([]byte, width) } } // Two ways to ask for extra leading zero digits: %.3d or %03d. // If both are specified the f.zero flag is ignored and // padding with spaces is used instead. prec := 0 if f.precPresent { prec = f.prec // Precision of 0 and value of 0 means "print nothing" but padding. if prec == 0 && u == 0 { oldZero := f.zero f.zero = false f.writePadding(f.wid) f.zero = oldZero return } } else if f.zero && f.widPresent { prec = f.wid if negative || f.plus || f.space { prec-- // leave room for sign } } // Because printing is easier right-to-left: format u into buf, ending at buf[i]. // We could make things marginally faster by splitting the 32-bit case out // into a separate block but it's not worth the duplication, so u has 64 bits. i := len(buf) // Use constants for the division and modulo for more efficient code. // Switch cases ordered by popularity. switch base { case 10: for u >= 10 { i-- next := u / 10 buf[i] = byte('0' + u - next*10) u = next } case 16: for u >= 16 { i-- buf[i] = digits[u&0xF] u >>= 4 } case 8: for u >= 8 { i-- buf[i] = byte('0' + u&7) u >>= 3 } case 2: for u >= 2 { i-- buf[i] = byte('0' + u&1) u >>= 1 } default: panic("fmt: unknown base; can't happen") } i-- buf[i] = digits[u] for i > 0 && prec > len(buf)-i { i-- buf[i] = '0' } // Various prefixes: 0x, -, etc. if f.sharp { switch base { case 2: // Add a leading 0b. i-- buf[i] = 'b' i-- buf[i] = '0' case 8: if buf[i] != '0' { i-- buf[i] = '0' } case 16: // Add a leading 0x or 0X. i-- buf[i] = digits[16] i-- buf[i] = '0' } } if verb == 'O' { i-- buf[i] = 'o' i-- buf[i] = '0' } if negative { i-- buf[i] = '-' } else if f.plus { i-- buf[i] = '+' } else if f.space { i-- buf[i] = ' ' } // Left padding with zeros has already been handled like precision earlier // or the f.zero flag is ignored due to an explicitly set precision. oldZero := f.zero f.zero = false f.pad(buf[i:]) f.zero = oldZero } // truncateString truncates the string s to the specified precision, if present. func (f *fmt) truncateString(s string) string { if f.precPresent { n := f.prec for i := range s { n-- if n < 0 { return s[:i] } } } return s } // truncate truncates the byte slice b as a string of the specified precision, if present. func (f *fmt) truncate(b []byte) []byte { if f.precPresent { n := f.prec for i := 0; i < len(b); { n-- if n < 0 { return b[:i] } wid := 1 if b[i] >= utf8.RuneSelf { _, wid = utf8.DecodeRune(b[i:]) } i += wid } } return b } // fmtS formats a string. func (f *fmt) fmtS(s string) { s = f.truncateString(s) f.padString(s) } // fmtBs formats the byte slice b as if it was formatted as string with fmtS. func (f *fmt) fmtBs(b []byte) { b = f.truncate(b) f.pad(b) } // fmtSbx formats a string or byte slice as a hexadecimal encoding of its bytes. func (f *fmt) fmtSbx(s string, b []byte, digits string) { length := len(b) if b == nil { // No byte slice present. Assume string s should be encoded. length = len(s) } // Set length to not process more bytes than the precision demands. if f.precPresent && f.prec < length { length = f.prec } // Compute width of the encoding taking into account the f.sharp and f.space flag. width := 2 * length if width > 0 { if f.space { // Each element encoded by two hexadecimals will get a leading 0x or 0X. if f.sharp { width *= 2 } // Elements will be separated by a space. width += length - 1 } else if f.sharp { // Only a leading 0x or 0X will be added for the whole string. width += 2 } } else { // The byte slice or string that should be encoded is empty. if f.widPresent { f.writePadding(f.wid) } return } // Handle padding to the left. if f.widPresent && f.wid > width && !f.minus { f.writePadding(f.wid - width) } // Write the encoding directly into the output buffer. buf := *f.buf if f.sharp { // Add leading 0x or 0X. buf = append(buf, '0', digits[16]) } var c byte for i := 0; i < length; i++ { if f.space && i > 0 { // Separate elements with a space. buf = append(buf, ' ') if f.sharp { // Add leading 0x or 0X for each element. buf = append(buf, '0', digits[16]) } } if b != nil { c = b[i] // Take a byte from the input byte slice. } else { c = s[i] // Take a byte from the input string. } // Encode each byte as two hexadecimal digits. buf = append(buf, digits[c>>4], digits[c&0xF]) } *f.buf = buf // Handle padding to the right. if f.widPresent && f.wid > width && f.minus { f.writePadding(f.wid - width) } } // fmtSx formats a string as a hexadecimal encoding of its bytes. func (f *fmt) fmtSx(s, digits string) { f.fmtSbx(s, nil, digits) } // fmtBx formats a byte slice as a hexadecimal encoding of its bytes. func (f *fmt) fmtBx(b []byte, digits string) { f.fmtSbx("", b, digits) } // fmtQ formats a string as a double-quoted, escaped Go string constant. // If f.sharp is set a raw (backquoted) string may be returned instead // if the string does not contain any control characters other than tab. func (f *fmt) fmtQ(s string) { s = f.truncateString(s) if f.sharp && strconv.CanBackquote(s) { f.padString("`" + s + "`") return } buf := f.intbuf[:0] if f.plus { f.pad(strconv.AppendQuoteToASCII(buf, s)) } else { f.pad(strconv.AppendQuote(buf, s)) } } // fmtC formats an integer as a Unicode character. // If the character is not valid Unicode, it will print '\ufffd'. func (f *fmt) fmtC(c uint64) { // Explicitly check whether c exceeds utf8.MaxRune since the conversion // of a uint64 to a rune may lose precision that indicates an overflow. r := rune(c) if c > utf8.MaxRune { r = utf8.RuneError } buf := f.intbuf[:0] f.pad(utf8.AppendRune(buf, r)) } // fmtQc formats an integer as a single-quoted, escaped Go character constant. // If the character is not valid Unicode, it will print '\ufffd'. func (f *fmt) fmtQc(c uint64) { r := rune(c) if c > utf8.MaxRune { r = utf8.RuneError } buf := f.intbuf[:0] if f.plus { f.pad(strconv.AppendQuoteRuneToASCII(buf, r)) } else { f.pad(strconv.AppendQuoteRune(buf, r)) } } // fmtFloat formats a float64. It assumes that verb is a valid format specifier // for strconv.AppendFloat and therefore fits into a byte. func (f *fmt) fmtFloat(v float64, size int, verb rune, prec int) { // Explicit precision in format specifier overrules default precision. if f.precPresent { prec = f.prec } // Format number, reserving space for leading + sign if needed. num := strconv.AppendFloat(f.intbuf[:1], v, byte(verb), prec, size) if num[1] == '-' || num[1] == '+' { num = num[1:] } else { num[0] = '+' } // f.space means to add a leading space instead of a "+" sign unless // the sign is explicitly asked for by f.plus. if f.space && num[0] == '+' && !f.plus { num[0] = ' ' } // Special handling for infinities and NaN, // which don't look like a number so shouldn't be padded with zeros. if num[1] == 'I' || num[1] == 'N' { oldZero := f.zero f.zero = false // Remove sign before NaN if not asked for. if num[1] == 'N' && !f.space && !f.plus { num = num[1:] } f.pad(num) f.zero = oldZero return } // The sharp flag forces printing a decimal point for non-binary formats // and retains trailing zeros, which we may need to restore. if f.sharp && verb != 'b' { digits := 0 switch verb { case 'v', 'g', 'G', 'x': digits = prec // If no precision is set explicitly use a precision of 6. if digits == -1 { digits = 6 } } // Buffer pre-allocated with enough room for // exponent notations of the form "e+123" or "p-1023". var tailBuf [6]byte tail := tailBuf[:0] hasDecimalPoint := false sawNonzeroDigit := false // Starting from i = 1 to skip sign at num[0]. for i := 1; i < len(num); i++ { switch num[i] { case '.': hasDecimalPoint = true case 'p', 'P': tail = append(tail, num[i:]...) num = num[:i] case 'e', 'E': if verb != 'x' && verb != 'X' { tail = append(tail, num[i:]...) num = num[:i] break } fallthrough default: if num[i] != '0' { sawNonzeroDigit = true } // Count significant digits after the first non-zero digit. if sawNonzeroDigit { digits-- } } } if !hasDecimalPoint { // Leading digit 0 should contribute once to digits. if len(num) == 2 && num[1] == '0' { digits-- } num = append(num, '.') } for digits > 0 { num = append(num, '0') digits-- } num = append(num, tail...) } // We want a sign if asked for and if the sign is not positive. if f.plus || num[0] != '+' { // If we're zero padding to the left we want the sign before the leading zeros. // Achieve this by writing the sign out and then padding the unsigned number. if f.zero && f.widPresent && f.wid > len(num) { f.buf.writeByte(num[0]) f.writePadding(f.wid - len(num)) f.buf.write(num[1:]) return } f.pad(num) return } // No sign to show and the number is positive; just print the unsigned number. f.pad(num[1:]) }