// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package base32 implements base32 encoding as specified by RFC 4648. package base32 import ( "io" "slices" "strconv" ) /* * Encodings */ // An Encoding is a radix 32 encoding/decoding scheme, defined by a // 32-character alphabet. The most common is the "base32" encoding // introduced for SASL GSSAPI and standardized in RFC 4648. // The alternate "base32hex" encoding is used in DNSSEC. type Encoding struct { encode [32]byte // mapping of symbol index to symbol byte value decodeMap [256]uint8 // mapping of symbol byte value to symbol index padChar rune } const ( StdPadding rune = '=' // Standard padding character NoPadding rune = -1 // No padding ) const ( decodeMapInitialize = "" + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" + "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" invalidIndex = '\xff' ) // NewEncoding returns a new padded Encoding defined by the given alphabet, // which must be a 32-byte string that contains unique byte values and // does not contain the padding character or CR / LF ('\r', '\n'). // The alphabet is treated as a sequence of byte values // without any special treatment for multi-byte UTF-8. // The resulting Encoding uses the default padding character ('='), // which may be changed or disabled via [Encoding.WithPadding]. func NewEncoding(encoder string) *Encoding { if len(encoder) != 32 { panic("encoding alphabet is not 32-bytes long") } e := new(Encoding) e.padChar = StdPadding copy(e.encode[:], encoder) copy(e.decodeMap[:], decodeMapInitialize) for i := 0; i < len(encoder); i++ { // Note: While we document that the alphabet cannot contain // the padding character, we do not enforce it since we do not know // if the caller intends to switch the padding from StdPadding later. switch { case encoder[i] == '\n' || encoder[i] == '\r': panic("encoding alphabet contains newline character") case e.decodeMap[encoder[i]] != invalidIndex: panic("encoding alphabet includes duplicate symbols") } e.decodeMap[encoder[i]] = uint8(i) } return e } // StdEncoding is the standard base32 encoding, as defined in RFC 4648. var StdEncoding = NewEncoding("ABCDEFGHIJKLMNOPQRSTUVWXYZ234567") // HexEncoding is the “Extended Hex Alphabet” defined in RFC 4648. // It is typically used in DNS. var HexEncoding = NewEncoding("0123456789ABCDEFGHIJKLMNOPQRSTUV") // WithPadding creates a new encoding identical to enc except // with a specified padding character, or NoPadding to disable padding. // The padding character must not be '\r' or '\n', // must not be contained in the encoding's alphabet, // must not be negative, and must be a rune equal or below '\xff'. // Padding characters above '\x7f' are encoded as their exact byte value // rather than using the UTF-8 representation of the codepoint. func (enc Encoding) WithPadding(padding rune) *Encoding { switch { case padding < NoPadding || padding == '\r' || padding == '\n' || padding > 0xff: panic("invalid padding") case padding != NoPadding && enc.decodeMap[byte(padding)] != invalidIndex: panic("padding contained in alphabet") } enc.padChar = padding return &enc } /* * Encoder */ // Encode encodes src using the encoding enc, // writing [Encoding.EncodedLen](len(src)) bytes to dst. // // The encoding pads the output to a multiple of 8 bytes, // so Encode is not appropriate for use on individual blocks // of a large data stream. Use [NewEncoder] instead. func (enc *Encoding) Encode(dst, src []byte) { if len(src) == 0 { return } // enc is a pointer receiver, so the use of enc.encode within the hot // loop below means a nil check at every operation. Lift that nil check // outside of the loop to speed up the encoder. _ = enc.encode di, si := 0, 0 n := (len(src) / 5) * 5 for si < n { // Combining two 32 bit loads allows the same code to be used // for 32 and 64 bit platforms. hi := uint32(src[si+0])<<24 | uint32(src[si+1])<<16 | uint32(src[si+2])<<8 | uint32(src[si+3]) lo := hi<<8 | uint32(src[si+4]) dst[di+0] = enc.encode[(hi>>27)&0x1F] dst[di+1] = enc.encode[(hi>>22)&0x1F] dst[di+2] = enc.encode[(hi>>17)&0x1F] dst[di+3] = enc.encode[(hi>>12)&0x1F] dst[di+4] = enc.encode[(hi>>7)&0x1F] dst[di+5] = enc.encode[(hi>>2)&0x1F] dst[di+6] = enc.encode[(lo>>5)&0x1F] dst[di+7] = enc.encode[(lo)&0x1F] si += 5 di += 8 } // Add the remaining small block remain := len(src) - si if remain == 0 { return } // Encode the remaining bytes in reverse order. val := uint32(0) switch remain { case 4: val |= uint32(src[si+3]) dst[di+6] = enc.encode[val<<3&0x1F] dst[di+5] = enc.encode[val>>2&0x1F] fallthrough case 3: val |= uint32(src[si+2]) << 8 dst[di+4] = enc.encode[val>>7&0x1F] fallthrough case 2: val |= uint32(src[si+1]) << 16 dst[di+3] = enc.encode[val>>12&0x1F] dst[di+2] = enc.encode[val>>17&0x1F] fallthrough case 1: val |= uint32(src[si+0]) << 24 dst[di+1] = enc.encode[val>>22&0x1F] dst[di+0] = enc.encode[val>>27&0x1F] } // Pad the final quantum if enc.padChar != NoPadding { nPad := (remain * 8 / 5) + 1 for i := nPad; i < 8; i++ { dst[di+i] = byte(enc.padChar) } } } // AppendEncode appends the base32 encoded src to dst // and returns the extended buffer. func (enc *Encoding) AppendEncode(dst, src []byte) []byte { n := enc.EncodedLen(len(src)) dst = slices.Grow(dst, n) enc.Encode(dst[len(dst):][:n], src) return dst[:len(dst)+n] } // EncodeToString returns the base32 encoding of src. func (enc *Encoding) EncodeToString(src []byte) string { buf := make([]byte, enc.EncodedLen(len(src))) enc.Encode(buf, src) return string(buf) } type encoder struct { err error enc *Encoding w io.Writer buf [5]byte // buffered data waiting to be encoded nbuf int // number of bytes in buf out [1024]byte // output buffer } func (e *encoder) Write(p []byte) (n int, err error) { if e.err != nil { return 0, e.err } // Leading fringe. if e.nbuf > 0 { var i int for i = 0; i < len(p) && e.nbuf < 5; i++ { e.buf[e.nbuf] = p[i] e.nbuf++ } n += i p = p[i:] if e.nbuf < 5 { return } e.enc.Encode(e.out[0:], e.buf[0:]) if _, e.err = e.w.Write(e.out[0:8]); e.err != nil { return n, e.err } e.nbuf = 0 } // Large interior chunks. for len(p) >= 5 { nn := len(e.out) / 8 * 5 if nn > len(p) { nn = len(p) nn -= nn % 5 } e.enc.Encode(e.out[0:], p[0:nn]) if _, e.err = e.w.Write(e.out[0 : nn/5*8]); e.err != nil { return n, e.err } n += nn p = p[nn:] } // Trailing fringe. copy(e.buf[:], p) e.nbuf = len(p) n += len(p) return } // Close flushes any pending output from the encoder. // It is an error to call Write after calling Close. func (e *encoder) Close() error { // If there's anything left in the buffer, flush it out if e.err == nil && e.nbuf > 0 { e.enc.Encode(e.out[0:], e.buf[0:e.nbuf]) encodedLen := e.enc.EncodedLen(e.nbuf) e.nbuf = 0 _, e.err = e.w.Write(e.out[0:encodedLen]) } return e.err } // NewEncoder returns a new base32 stream encoder. Data written to // the returned writer will be encoded using enc and then written to w. // Base32 encodings operate in 5-byte blocks; when finished // writing, the caller must Close the returned encoder to flush any // partially written blocks. func NewEncoder(enc *Encoding, w io.Writer) io.WriteCloser { return &encoder{enc: enc, w: w} } // EncodedLen returns the length in bytes of the base32 encoding // of an input buffer of length n. func (enc *Encoding) EncodedLen(n int) int { if enc.padChar == NoPadding { return n/5*8 + (n%5*8+4)/5 } return (n + 4) / 5 * 8 } /* * Decoder */ type CorruptInputError int64 func (e CorruptInputError) Error() string { return "illegal base32 data at input byte " + strconv.FormatInt(int64(e), 10) } // decode is like Decode but returns an additional 'end' value, which // indicates if end-of-message padding was encountered and thus any // additional data is an error. This method assumes that src has been // stripped of all supported whitespace ('\r' and '\n'). func (enc *Encoding) decode(dst, src []byte) (n int, end bool, err error) { // Lift the nil check outside of the loop. _ = enc.decodeMap dsti := 0 olen := len(src) for len(src) > 0 && !end { // Decode quantum using the base32 alphabet var dbuf [8]byte dlen := 8 for j := 0; j < 8; { if len(src) == 0 { if enc.padChar != NoPadding { // We have reached the end and are missing padding return n, false, CorruptInputError(olen - len(src) - j) } // We have reached the end and are not expecting any padding dlen, end = j, true break } in := src[0] src = src[1:] if in == byte(enc.padChar) && j >= 2 && len(src) < 8 { // We've reached the end and there's padding if len(src)+j < 8-1 { // not enough padding return n, false, CorruptInputError(olen) } for k := 0; k < 8-1-j; k++ { if len(src) > k && src[k] != byte(enc.padChar) { // incorrect padding return n, false, CorruptInputError(olen - len(src) + k - 1) } } dlen, end = j, true // 7, 5 and 2 are not valid padding lengths, and so 1, 3 and 6 are not // valid dlen values. See RFC 4648 Section 6 "Base 32 Encoding" listing // the five valid padding lengths, and Section 9 "Illustrations and // Examples" for an illustration for how the 1st, 3rd and 6th base32 // src bytes do not yield enough information to decode a dst byte. if dlen == 1 || dlen == 3 || dlen == 6 { return n, false, CorruptInputError(olen - len(src) - 1) } break } dbuf[j] = enc.decodeMap[in] if dbuf[j] == 0xFF { return n, false, CorruptInputError(olen - len(src) - 1) } j++ } // Pack 8x 5-bit source blocks into 5 byte destination // quantum switch dlen { case 8: dst[dsti+4] = dbuf[6]<<5 | dbuf[7] n++ fallthrough case 7: dst[dsti+3] = dbuf[4]<<7 | dbuf[5]<<2 | dbuf[6]>>3 n++ fallthrough case 5: dst[dsti+2] = dbuf[3]<<4 | dbuf[4]>>1 n++ fallthrough case 4: dst[dsti+1] = dbuf[1]<<6 | dbuf[2]<<1 | dbuf[3]>>4 n++ fallthrough case 2: dst[dsti+0] = dbuf[0]<<3 | dbuf[1]>>2 n++ } dsti += 5 } return n, end, nil } // Decode decodes src using the encoding enc. It writes at most // [Encoding.DecodedLen](len(src)) bytes to dst and returns the number of bytes // written. If src contains invalid base32 data, it will return the // number of bytes successfully written and [CorruptInputError]. // Newline characters (\r and \n) are ignored. func (enc *Encoding) Decode(dst, src []byte) (n int, err error) { buf := make([]byte, len(src)) l := stripNewlines(buf, src) n, _, err = enc.decode(dst, buf[:l]) return } // AppendDecode appends the base32 decoded src to dst // and returns the extended buffer. // If the input is malformed, it returns the partially decoded src and an error. func (enc *Encoding) AppendDecode(dst, src []byte) ([]byte, error) { // Compute the output size without padding to avoid over allocating. n := len(src) for n > 0 && rune(src[n-1]) == enc.padChar { n-- } n = decodedLen(n, NoPadding) dst = slices.Grow(dst, n) n, err := enc.Decode(dst[len(dst):][:n], src) return dst[:len(dst)+n], err } // DecodeString returns the bytes represented by the base32 string s. func (enc *Encoding) DecodeString(s string) ([]byte, error) { buf := []byte(s) l := stripNewlines(buf, buf) n, _, err := enc.decode(buf, buf[:l]) return buf[:n], err } type decoder struct { err error enc *Encoding r io.Reader end bool // saw end of message buf [1024]byte // leftover input nbuf int out []byte // leftover decoded output outbuf [1024 / 8 * 5]byte } func readEncodedData(r io.Reader, buf []byte, min int, expectsPadding bool) (n int, err error) { for n < min && err == nil { var nn int nn, err = r.Read(buf[n:]) n += nn } // data was read, less than min bytes could be read if n < min && n > 0 && err == io.EOF { err = io.ErrUnexpectedEOF } // no data was read, the buffer already contains some data // when padding is disabled this is not an error, as the message can be of // any length if expectsPadding && min < 8 && n == 0 && err == io.EOF { err = io.ErrUnexpectedEOF } return } func (d *decoder) Read(p []byte) (n int, err error) { // Use leftover decoded output from last read. if len(d.out) > 0 { n = copy(p, d.out) d.out = d.out[n:] if len(d.out) == 0 { return n, d.err } return n, nil } if d.err != nil { return 0, d.err } // Read a chunk. nn := len(p) / 5 * 8 if nn < 8 { nn = 8 } if nn > len(d.buf) { nn = len(d.buf) } // Minimum amount of bytes that needs to be read each cycle var min int var expectsPadding bool if d.enc.padChar == NoPadding { min = 1 expectsPadding = false } else { min = 8 - d.nbuf expectsPadding = true } nn, d.err = readEncodedData(d.r, d.buf[d.nbuf:nn], min, expectsPadding) d.nbuf += nn if d.nbuf < min { return 0, d.err } if nn > 0 && d.end { return 0, CorruptInputError(0) } // Decode chunk into p, or d.out and then p if p is too small. var nr int if d.enc.padChar == NoPadding { nr = d.nbuf } else { nr = d.nbuf / 8 * 8 } nw := d.enc.DecodedLen(d.nbuf) if nw > len(p) { nw, d.end, err = d.enc.decode(d.outbuf[0:], d.buf[0:nr]) d.out = d.outbuf[0:nw] n = copy(p, d.out) d.out = d.out[n:] } else { n, d.end, err = d.enc.decode(p, d.buf[0:nr]) } d.nbuf -= nr for i := 0; i < d.nbuf; i++ { d.buf[i] = d.buf[i+nr] } if err != nil && (d.err == nil || d.err == io.EOF) { d.err = err } if len(d.out) > 0 { // We cannot return all the decoded bytes to the caller in this // invocation of Read, so we return a nil error to ensure that Read // will be called again. The error stored in d.err, if any, will be // returned with the last set of decoded bytes. return n, nil } return n, d.err } type newlineFilteringReader struct { wrapped io.Reader } // stripNewlines removes newline characters and returns the number // of non-newline characters copied to dst. func stripNewlines(dst, src []byte) int { offset := 0 for _, b := range src { if b == '\r' || b == '\n' { continue } dst[offset] = b offset++ } return offset } func (r *newlineFilteringReader) Read(p []byte) (int, error) { n, err := r.wrapped.Read(p) for n > 0 { s := p[0:n] offset := stripNewlines(s, s) if err != nil || offset > 0 { return offset, err } // Previous buffer entirely whitespace, read again n, err = r.wrapped.Read(p) } return n, err } // NewDecoder constructs a new base32 stream decoder. func NewDecoder(enc *Encoding, r io.Reader) io.Reader { return &decoder{enc: enc, r: &newlineFilteringReader{r}} } // DecodedLen returns the maximum length in bytes of the decoded data // corresponding to n bytes of base32-encoded data. func (enc *Encoding) DecodedLen(n int) int { return decodedLen(n, enc.padChar) } func decodedLen(n int, padChar rune) int { if padChar == NoPadding { return n/8*5 + n%8*5/8 } return n / 8 * 5 }