...

Source file src/crypto/elliptic/elliptic.go

Documentation: crypto/elliptic

```  // Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style

// Package elliptic implements several standard elliptic curves over prime
// fields.
package elliptic

// This package operates, internally, on Jacobian coordinates. For a given
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
// calculation can be performed within the transform (as in ScalarMult and
// ScalarBaseMult). But even for Add and Double, it's faster to apply and
// reverse the transform than to operate in affine coordinates.

import (
"io"
"math/big"
"sync"
)

// A Curve represents a short-form Weierstrass curve with a=-3.
// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
type Curve interface {
// Params returns the parameters for the curve.
Params() *CurveParams
// IsOnCurve reports whether the given (x,y) lies on the curve.
IsOnCurve(x, y *big.Int) bool
// Add returns the sum of (x1,y1) and (x2,y2)
Add(x1, y1, x2, y2 *big.Int) (x, y *big.Int)
// Double returns 2*(x,y)
Double(x1, y1 *big.Int) (x, y *big.Int)
// ScalarMult returns k*(Bx,By) where k is a number in big-endian form.
ScalarMult(x1, y1 *big.Int, k []byte) (x, y *big.Int)
// ScalarBaseMult returns k*G, where G is the base point of the group
// and k is an integer in big-endian form.
ScalarBaseMult(k []byte) (x, y *big.Int)
}

// CurveParams contains the parameters of an elliptic curve and also provides
// a generic, non-constant time implementation of Curve.
type CurveParams struct {
P       *big.Int // the order of the underlying field
N       *big.Int // the order of the base point
B       *big.Int // the constant of the curve equation
Gx, Gy  *big.Int // (x,y) of the base point
BitSize int      // the size of the underlying field
Name    string   // the canonical name of the curve
}

func (curve *CurveParams) Params() *CurveParams {
return curve
}

func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool {
// y² = x³ - 3x + b
y2 := new(big.Int).Mul(y, y)
y2.Mod(y2, curve.P)

x3 := new(big.Int).Mul(x, x)
x3.Mul(x3, x)

threeX := new(big.Int).Lsh(x, 1)

x3.Sub(x3, threeX)
x3.Mod(x3, curve.P)

return x3.Cmp(y2) == 0
}

// zForAffine returns a Jacobian Z value for the affine point (x, y). If x and
// y are zero, it assumes that they represent the point at infinity because (0,
// 0) is not on the any of the curves handled here.
func zForAffine(x, y *big.Int) *big.Int {
z := new(big.Int)
if x.Sign() != 0 || y.Sign() != 0 {
z.SetInt64(1)
}
return z
}

// affineFromJacobian reverses the Jacobian transform. See the comment at the
// top of the file. If the point is ∞ it returns 0, 0.
func (curve *CurveParams) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
if z.Sign() == 0 {
return new(big.Int), new(big.Int)
}

zinv := new(big.Int).ModInverse(z, curve.P)
zinvsq := new(big.Int).Mul(zinv, zinv)

xOut = new(big.Int).Mul(x, zinvsq)
xOut.Mod(xOut, curve.P)
zinvsq.Mul(zinvsq, zinv)
yOut = new(big.Int).Mul(y, zinvsq)
yOut.Mod(yOut, curve.P)
return
}

func (curve *CurveParams) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
z1 := zForAffine(x1, y1)
z2 := zForAffine(x2, y2)
return curve.affineFromJacobian(curve.addJacobian(x1, y1, z1, x2, y2, z2))
}

// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
// (x2, y2, z2) and returns their sum, also in Jacobian form.
func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
x3, y3, z3 := new(big.Int), new(big.Int), new(big.Int)
if z1.Sign() == 0 {
x3.Set(x2)
y3.Set(y2)
z3.Set(z2)
return x3, y3, z3
}
if z2.Sign() == 0 {
x3.Set(x1)
y3.Set(y1)
z3.Set(z1)
return x3, y3, z3
}

z1z1 := new(big.Int).Mul(z1, z1)
z1z1.Mod(z1z1, curve.P)
z2z2 := new(big.Int).Mul(z2, z2)
z2z2.Mod(z2z2, curve.P)

u1 := new(big.Int).Mul(x1, z2z2)
u1.Mod(u1, curve.P)
u2 := new(big.Int).Mul(x2, z1z1)
u2.Mod(u2, curve.P)
h := new(big.Int).Sub(u2, u1)
xEqual := h.Sign() == 0
if h.Sign() == -1 {
}
i := new(big.Int).Lsh(h, 1)
i.Mul(i, i)
j := new(big.Int).Mul(h, i)

s1 := new(big.Int).Mul(y1, z2)
s1.Mul(s1, z2z2)
s1.Mod(s1, curve.P)
s2 := new(big.Int).Mul(y2, z1)
s2.Mul(s2, z1z1)
s2.Mod(s2, curve.P)
r := new(big.Int).Sub(s2, s1)
if r.Sign() == -1 {
}
yEqual := r.Sign() == 0
if xEqual && yEqual {
return curve.doubleJacobian(x1, y1, z1)
}
r.Lsh(r, 1)
v := new(big.Int).Mul(u1, i)

x3.Set(r)
x3.Mul(x3, x3)
x3.Sub(x3, j)
x3.Sub(x3, v)
x3.Sub(x3, v)
x3.Mod(x3, curve.P)

y3.Set(r)
v.Sub(v, x3)
y3.Mul(y3, v)
s1.Mul(s1, j)
s1.Lsh(s1, 1)
y3.Sub(y3, s1)
y3.Mod(y3, curve.P)

z3.Mul(z3, z3)
z3.Sub(z3, z1z1)
z3.Sub(z3, z2z2)
z3.Mul(z3, h)
z3.Mod(z3, curve.P)

return x3, y3, z3
}

func (curve *CurveParams) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
z1 := zForAffine(x1, y1)
return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1))
}

// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
// returns its double, also in Jacobian form.
func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
delta := new(big.Int).Mul(z, z)
delta.Mod(delta, curve.P)
gamma := new(big.Int).Mul(y, y)
gamma.Mod(gamma, curve.P)
alpha := new(big.Int).Sub(x, delta)
if alpha.Sign() == -1 {
}
alpha.Mul(alpha, alpha2)
alpha2.Set(alpha)
alpha.Lsh(alpha, 1)

beta := alpha2.Mul(x, gamma)

x3 := new(big.Int).Mul(alpha, alpha)
beta8 := new(big.Int).Lsh(beta, 3)
x3.Sub(x3, beta8)
for x3.Sign() == -1 {
}
x3.Mod(x3, curve.P)

z3.Mul(z3, z3)
z3.Sub(z3, gamma)
if z3.Sign() == -1 {
}
z3.Sub(z3, delta)
if z3.Sign() == -1 {
}
z3.Mod(z3, curve.P)

beta.Lsh(beta, 2)
beta.Sub(beta, x3)
if beta.Sign() == -1 {
}
y3 := alpha.Mul(alpha, beta)

gamma.Mul(gamma, gamma)
gamma.Lsh(gamma, 3)
gamma.Mod(gamma, curve.P)

y3.Sub(y3, gamma)
if y3.Sign() == -1 {
}
y3.Mod(y3, curve.P)

return x3, y3, z3
}

func (curve *CurveParams) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
Bz := new(big.Int).SetInt64(1)
x, y, z := new(big.Int), new(big.Int), new(big.Int)

for _, byte := range k {
for bitNum := 0; bitNum < 8; bitNum++ {
x, y, z = curve.doubleJacobian(x, y, z)
if byte&0x80 == 0x80 {
x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z)
}
byte <<= 1
}
}

return curve.affineFromJacobian(x, y, z)
}

func (curve *CurveParams) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
return curve.ScalarMult(curve.Gx, curve.Gy, k)
}

var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f}

// GenerateKey returns a public/private key pair. The private key is
// generated using the given reader, which must return random data.
func GenerateKey(curve Curve, rand io.Reader) (priv []byte, x, y *big.Int, err error) {
N := curve.Params().N
bitSize := N.BitLen()
byteLen := (bitSize + 7) >> 3
priv = make([]byte, byteLen)

for x == nil {
if err != nil {
return
}
// We have to mask off any excess bits in the case that the size of the
// underlying field is not a whole number of bytes.
// This is because, in tests, rand will return all zeros and we don't
// want to get the point at infinity and loop forever.
priv[1] ^= 0x42

// If the scalar is out of range, sample another random number.
if new(big.Int).SetBytes(priv).Cmp(N) >= 0 {
continue
}

x, y = curve.ScalarBaseMult(priv)
}
return
}

// Marshal converts a point into the form specified in section 4.3.6 of ANSI X9.62.
func Marshal(curve Curve, x, y *big.Int) []byte {
byteLen := (curve.Params().BitSize + 7) >> 3

ret := make([]byte, 1+2*byteLen)
ret[0] = 4 // uncompressed point

xBytes := x.Bytes()
copy(ret[1+byteLen-len(xBytes):], xBytes)
yBytes := y.Bytes()
copy(ret[1+2*byteLen-len(yBytes):], yBytes)
return ret
}

// Unmarshal converts a point, serialized by Marshal, into an x, y pair.
// It is an error if the point is not on the curve. On error, x = nil.
func Unmarshal(curve Curve, data []byte) (x, y *big.Int) {
byteLen := (curve.Params().BitSize + 7) >> 3
if len(data) != 1+2*byteLen {
return
}
if data[0] != 4 { // uncompressed form
return
}
x = new(big.Int).SetBytes(data[1 : 1+byteLen])
y = new(big.Int).SetBytes(data[1+byteLen:])
if !curve.IsOnCurve(x, y) {
x, y = nil, nil
}
return
}

var initonce sync.Once
var p384 *CurveParams
var p521 *CurveParams

func initAll() {
initP224()
initP256()
initP384()
initP521()
}

func initP384() {
// See FIPS 186-3, section D.2.4
p384 = &CurveParams{Name: "P-384"}
p384.P, _ = new(big.Int).SetString("39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319", 10)
p384.N, _ = new(big.Int).SetString("39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643", 10)
p384.B, _ = new(big.Int).SetString("b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef", 16)
p384.Gy, _ = new(big.Int).SetString("3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f", 16)
p384.BitSize = 384
}

func initP521() {
// See FIPS 186-3, section D.2.5
p521 = &CurveParams{Name: "P-521"}
p521.P, _ = new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", 10)
p521.N, _ = new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449", 10)
p521.B, _ = new(big.Int).SetString("051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00", 16)
p521.Gx, _ = new(big.Int).SetString("c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66", 16)
p521.BitSize = 521
}

// P256 returns a Curve which implements P-256 (see FIPS 186-3, section D.2.3)
//
// The cryptographic operations are implemented using constant-time algorithms.
func P256() Curve {
initonce.Do(initAll)
return p256
}

// P384 returns a Curve which implements P-384 (see FIPS 186-3, section D.2.4)
//
// The cryptographic operations do not use constant-time algorithms.
func P384() Curve {
initonce.Do(initAll)
return p384
}

// P521 returns a Curve which implements P-521 (see FIPS 186-3, section D.2.5)
//
// The cryptographic operations do not use constant-time algorithms.
func P521() Curve {
initonce.Do(initAll)
return p521
}

```

View as plain text