// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package context_test import ( "context" "errors" "fmt" "net" "sync" "time" ) var neverReady = make(chan struct{}) // never closed // This example demonstrates the use of a cancelable context to prevent a // goroutine leak. By the end of the example function, the goroutine started // by gen will return without leaking. func ExampleWithCancel() { // gen generates integers in a separate goroutine and // sends them to the returned channel. // The callers of gen need to cancel the context once // they are done consuming generated integers not to leak // the internal goroutine started by gen. gen := func(ctx context.Context) <-chan int { dst := make(chan int) n := 1 go func() { for { select { case <-ctx.Done(): return // returning not to leak the goroutine case dst <- n: n++ } } }() return dst } ctx, cancel := context.WithCancel(context.Background()) defer cancel() // cancel when we are finished consuming integers for n := range gen(ctx) { fmt.Println(n) if n == 5 { break } } // Output: // 1 // 2 // 3 // 4 // 5 } // This example passes a context with an arbitrary deadline to tell a blocking // function that it should abandon its work as soon as it gets to it. func ExampleWithDeadline() { d := time.Now().Add(shortDuration) ctx, cancel := context.WithDeadline(context.Background(), d) // Even though ctx will be expired, it is good practice to call its // cancellation function in any case. Failure to do so may keep the // context and its parent alive longer than necessary. defer cancel() select { case <-neverReady: fmt.Println("ready") case <-ctx.Done(): fmt.Println(ctx.Err()) } // Output: // context deadline exceeded } // This example passes a context with a timeout to tell a blocking function that // it should abandon its work after the timeout elapses. func ExampleWithTimeout() { // Pass a context with a timeout to tell a blocking function that it // should abandon its work after the timeout elapses. ctx, cancel := context.WithTimeout(context.Background(), shortDuration) defer cancel() select { case <-neverReady: fmt.Println("ready") case <-ctx.Done(): fmt.Println(ctx.Err()) // prints "context deadline exceeded" } // Output: // context deadline exceeded } // This example demonstrates how a value can be passed to the context // and also how to retrieve it if it exists. func ExampleWithValue() { type favContextKey string f := func(ctx context.Context, k favContextKey) { if v := ctx.Value(k); v != nil { fmt.Println("found value:", v) return } fmt.Println("key not found:", k) } k := favContextKey("language") ctx := context.WithValue(context.Background(), k, "Go") f(ctx, k) f(ctx, favContextKey("color")) // Output: // found value: Go // key not found: color } // This example uses AfterFunc to define a function which waits on a sync.Cond, // stopping the wait when a context is canceled. func ExampleAfterFunc_cond() { waitOnCond := func(ctx context.Context, cond *sync.Cond, conditionMet func() bool) error { stopf := context.AfterFunc(ctx, func() { // We need to acquire cond.L here to be sure that the Broadcast // below won't occur before the call to Wait, which would result // in a missed signal (and deadlock). cond.L.Lock() defer cond.L.Unlock() // If multiple goroutines are waiting on cond simultaneously, // we need to make sure we wake up exactly this one. // That means that we need to Broadcast to all of the goroutines, // which will wake them all up. // // If there are N concurrent calls to waitOnCond, each of the goroutines // will spuriously wake up O(N) other goroutines that aren't ready yet, // so this will cause the overall CPU cost to be O(N²). cond.Broadcast() }) defer stopf() // Since the wakeups are using Broadcast instead of Signal, this call to // Wait may unblock due to some other goroutine's context becoming done, // so to be sure that ctx is actually done we need to check it in a loop. for !conditionMet() { cond.Wait() if ctx.Err() != nil { return ctx.Err() } } return nil } cond := sync.NewCond(new(sync.Mutex)) var wg sync.WaitGroup for i := 0; i < 4; i++ { wg.Add(1) go func() { defer wg.Done() ctx, cancel := context.WithTimeout(context.Background(), 1*time.Millisecond) defer cancel() cond.L.Lock() defer cond.L.Unlock() err := waitOnCond(ctx, cond, func() bool { return false }) fmt.Println(err) }() } wg.Wait() // Output: // context deadline exceeded // context deadline exceeded // context deadline exceeded // context deadline exceeded } // This example uses AfterFunc to define a function which reads from a net.Conn, // stopping the read when a context is canceled. func ExampleAfterFunc_connection() { readFromConn := func(ctx context.Context, conn net.Conn, b []byte) (n int, err error) { stopc := make(chan struct{}) stop := context.AfterFunc(ctx, func() { conn.SetReadDeadline(time.Now()) close(stopc) }) n, err = conn.Read(b) if !stop() { // The AfterFunc was started. // Wait for it to complete, and reset the Conn's deadline. <-stopc conn.SetReadDeadline(time.Time{}) return n, ctx.Err() } return n, err } listener, err := net.Listen("tcp", ":0") if err != nil { fmt.Println(err) return } defer listener.Close() conn, err := net.Dial(listener.Addr().Network(), listener.Addr().String()) if err != nil { fmt.Println(err) return } defer conn.Close() ctx, cancel := context.WithTimeout(context.Background(), 1*time.Millisecond) defer cancel() b := make([]byte, 1024) _, err = readFromConn(ctx, conn, b) fmt.Println(err) // Output: // context deadline exceeded } // This example uses AfterFunc to define a function which combines // the cancellation signals of two Contexts. func ExampleAfterFunc_merge() { // mergeCancel returns a context that contains the values of ctx, // and which is canceled when either ctx or cancelCtx is canceled. mergeCancel := func(ctx, cancelCtx context.Context) (context.Context, context.CancelFunc) { ctx, cancel := context.WithCancelCause(ctx) stop := context.AfterFunc(cancelCtx, func() { cancel(context.Cause(cancelCtx)) }) return ctx, func() { stop() cancel(context.Canceled) } } ctx1, cancel1 := context.WithCancelCause(context.Background()) defer cancel1(errors.New("ctx1 canceled")) ctx2, cancel2 := context.WithCancelCause(context.Background()) mergedCtx, mergedCancel := mergeCancel(ctx1, ctx2) defer mergedCancel() cancel2(errors.New("ctx2 canceled")) <-mergedCtx.Done() fmt.Println(context.Cause(mergedCtx)) // Output: // ctx2 canceled }