// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package flate import ( "errors" "fmt" "io" "math" ) const ( NoCompression = 0 BestSpeed = 1 BestCompression = 9 DefaultCompression = -1 // HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman // entropy encoding. This mode is useful in compressing data that has // already been compressed with an LZ style algorithm (e.g. Snappy or LZ4) // that lacks an entropy encoder. Compression gains are achieved when // certain bytes in the input stream occur more frequently than others. // // Note that HuffmanOnly produces a compressed output that is // RFC 1951 compliant. That is, any valid DEFLATE decompressor will // continue to be able to decompress this output. HuffmanOnly = -2 ) const ( logWindowSize = 15 windowSize = 1 << logWindowSize windowMask = windowSize - 1 // The LZ77 step produces a sequence of literal tokens and // pair tokens. The offset is also known as distance. The underlying wire // format limits the range of lengths and offsets. For example, there are // 256 legitimate lengths: those in the range [3, 258]. This package's // compressor uses a higher minimum match length, enabling optimizations // such as finding matches via 32-bit loads and compares. baseMatchLength = 3 // The smallest match length per the RFC section 3.2.5 minMatchLength = 4 // The smallest match length that the compressor actually emits maxMatchLength = 258 // The largest match length baseMatchOffset = 1 // The smallest match offset maxMatchOffset = 1 << 15 // The largest match offset // The maximum number of tokens we put into a single flate block, just to // stop things from getting too large. maxFlateBlockTokens = 1 << 14 maxStoreBlockSize = 65535 hashBits = 17 // After 17 performance degrades hashSize = 1 << hashBits hashMask = (1 << hashBits) - 1 maxHashOffset = 1 << 24 skipNever = math.MaxInt32 ) type compressionLevel struct { level, good, lazy, nice, chain, fastSkipHashing int } var levels = []compressionLevel{ {0, 0, 0, 0, 0, 0}, // NoCompression. {1, 0, 0, 0, 0, 0}, // BestSpeed uses a custom algorithm; see deflatefast.go. // For levels 2-3 we don't bother trying with lazy matches. {2, 4, 0, 16, 8, 5}, {3, 4, 0, 32, 32, 6}, // Levels 4-9 use increasingly more lazy matching // and increasingly stringent conditions for "good enough". {4, 4, 4, 16, 16, skipNever}, {5, 8, 16, 32, 32, skipNever}, {6, 8, 16, 128, 128, skipNever}, {7, 8, 32, 128, 256, skipNever}, {8, 32, 128, 258, 1024, skipNever}, {9, 32, 258, 258, 4096, skipNever}, } type compressor struct { compressionLevel w *huffmanBitWriter bulkHasher func([]byte, []uint32) // compression algorithm fill func(*compressor, []byte) int // copy data to window step func(*compressor) // process window sync bool // requesting flush bestSpeed *deflateFast // Encoder for BestSpeed // Input hash chains // hashHead[hashValue] contains the largest inputIndex with the specified hash value // If hashHead[hashValue] is within the current window, then // hashPrev[hashHead[hashValue] & windowMask] contains the previous index // with the same hash value. chainHead int hashHead [hashSize]uint32 hashPrev [windowSize]uint32 hashOffset int // input window: unprocessed data is window[index:windowEnd] index int window []byte windowEnd int blockStart int // window index where current tokens start byteAvailable bool // if true, still need to process window[index-1]. // queued output tokens tokens []token // deflate state length int offset int maxInsertIndex int err error // hashMatch must be able to contain hashes for the maximum match length. hashMatch [maxMatchLength - 1]uint32 } func (d *compressor) fillDeflate(b []byte) int { if d.index >= 2*windowSize-(minMatchLength+maxMatchLength) { // shift the window by windowSize copy(d.window, d.window[windowSize:2*windowSize]) d.index -= windowSize d.windowEnd -= windowSize if d.blockStart >= windowSize { d.blockStart -= windowSize } else { d.blockStart = math.MaxInt32 } d.hashOffset += windowSize if d.hashOffset > maxHashOffset { delta := d.hashOffset - 1 d.hashOffset -= delta d.chainHead -= delta // Iterate over slices instead of arrays to avoid copying // the entire table onto the stack (Issue #18625). for i, v := range d.hashPrev[:] { if int(v) > delta { d.hashPrev[i] = uint32(int(v) - delta) } else { d.hashPrev[i] = 0 } } for i, v := range d.hashHead[:] { if int(v) > delta { d.hashHead[i] = uint32(int(v) - delta) } else { d.hashHead[i] = 0 } } } } n := copy(d.window[d.windowEnd:], b) d.windowEnd += n return n } func (d *compressor) writeBlock(tokens []token, index int) error { if index > 0 { var window []byte if d.blockStart <= index { window = d.window[d.blockStart:index] } d.blockStart = index d.w.writeBlock(tokens, false, window) return d.w.err } return nil } // fillWindow will fill the current window with the supplied // dictionary and calculate all hashes. // This is much faster than doing a full encode. // Should only be used after a reset. func (d *compressor) fillWindow(b []byte) { // Do not fill window if we are in store-only mode. if d.compressionLevel.level < 2 { return } if d.index != 0 || d.windowEnd != 0 { panic("internal error: fillWindow called with stale data") } // If we are given too much, cut it. if len(b) > windowSize { b = b[len(b)-windowSize:] } // Add all to window. n := copy(d.window, b) // Calculate 256 hashes at the time (more L1 cache hits) loops := (n + 256 - minMatchLength) / 256 for j := 0; j < loops; j++ { index := j * 256 end := index + 256 + minMatchLength - 1 if end > n { end = n } toCheck := d.window[index:end] dstSize := len(toCheck) - minMatchLength + 1 if dstSize <= 0 { continue } dst := d.hashMatch[:dstSize] d.bulkHasher(toCheck, dst) for i, val := range dst { di := i + index hh := &d.hashHead[val&hashMask] // Get previous value with the same hash. // Our chain should point to the previous value. d.hashPrev[di&windowMask] = *hh // Set the head of the hash chain to us. *hh = uint32(di + d.hashOffset) } } // Update window information. d.windowEnd = n d.index = n } // Try to find a match starting at index whose length is greater than prevSize. // We only look at chainCount possibilities before giving up. func (d *compressor) findMatch(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) { minMatchLook := maxMatchLength if lookahead < minMatchLook { minMatchLook = lookahead } win := d.window[0 : pos+minMatchLook] // We quit when we get a match that's at least nice long nice := len(win) - pos if d.nice < nice { nice = d.nice } // If we've got a match that's good enough, only look in 1/4 the chain. tries := d.chain length = prevLength if length >= d.good { tries >>= 2 } wEnd := win[pos+length] wPos := win[pos:] minIndex := pos - windowSize for i := prevHead; tries > 0; tries-- { if wEnd == win[i+length] { n := matchLen(win[i:], wPos, minMatchLook) if n > length && (n > minMatchLength || pos-i <= 4096) { length = n offset = pos - i ok = true if n >= nice { // The match is good enough that we don't try to find a better one. break } wEnd = win[pos+n] } } if i == minIndex { // hashPrev[i & windowMask] has already been overwritten, so stop now. break } i = int(d.hashPrev[i&windowMask]) - d.hashOffset if i < minIndex || i < 0 { break } } return } func (d *compressor) writeStoredBlock(buf []byte) error { if d.w.writeStoredHeader(len(buf), false); d.w.err != nil { return d.w.err } d.w.writeBytes(buf) return d.w.err } const hashmul = 0x1e35a7bd // hash4 returns a hash representation of the first 4 bytes // of the supplied slice. // The caller must ensure that len(b) >= 4. func hash4(b []byte) uint32 { return ((uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24) * hashmul) >> (32 - hashBits) } // bulkHash4 will compute hashes using the same // algorithm as hash4. func bulkHash4(b []byte, dst []uint32) { if len(b) < minMatchLength { return } hb := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24 dst[0] = (hb * hashmul) >> (32 - hashBits) end := len(b) - minMatchLength + 1 for i := 1; i < end; i++ { hb = (hb << 8) | uint32(b[i+3]) dst[i] = (hb * hashmul) >> (32 - hashBits) } } // matchLen returns the number of matching bytes in a and b // up to length 'max'. Both slices must be at least 'max' // bytes in size. func matchLen(a, b []byte, max int) int { a = a[:max] b = b[:len(a)] for i, av := range a { if b[i] != av { return i } } return max } // encSpeed will compress and store the currently added data, // if enough has been accumulated or we at the end of the stream. // Any error that occurred will be in d.err func (d *compressor) encSpeed() { // We only compress if we have maxStoreBlockSize. if d.windowEnd < maxStoreBlockSize { if !d.sync { return } // Handle small sizes. if d.windowEnd < 128 { switch { case d.windowEnd == 0: return case d.windowEnd <= 16: d.err = d.writeStoredBlock(d.window[:d.windowEnd]) default: d.w.writeBlockHuff(false, d.window[:d.windowEnd]) d.err = d.w.err } d.windowEnd = 0 d.bestSpeed.reset() return } } // Encode the block. d.tokens = d.bestSpeed.encode(d.tokens[:0], d.window[:d.windowEnd]) // If we removed less than 1/16th, Huffman compress the block. if len(d.tokens) > d.windowEnd-(d.windowEnd>>4) { d.w.writeBlockHuff(false, d.window[:d.windowEnd]) } else { d.w.writeBlockDynamic(d.tokens, false, d.window[:d.windowEnd]) } d.err = d.w.err d.windowEnd = 0 } func (d *compressor) initDeflate() { d.window = make([]byte, 2*windowSize) d.hashOffset = 1 d.tokens = make([]token, 0, maxFlateBlockTokens+1) d.length = minMatchLength - 1 d.offset = 0 d.byteAvailable = false d.index = 0 d.chainHead = -1 d.bulkHasher = bulkHash4 } func (d *compressor) deflate() { if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync { return } d.maxInsertIndex = d.windowEnd - (minMatchLength - 1) Loop: for { if d.index > d.windowEnd { panic("index > windowEnd") } lookahead := d.windowEnd - d.index if lookahead < minMatchLength+maxMatchLength { if !d.sync { break Loop } if d.index > d.windowEnd { panic("index > windowEnd") } if lookahead == 0 { // Flush current output block if any. if d.byteAvailable { // There is still one pending token that needs to be flushed d.tokens = append(d.tokens, literalToken(uint32(d.window[d.index-1]))) d.byteAvailable = false } if len(d.tokens) > 0 { if d.err = d.writeBlock(d.tokens, d.index); d.err != nil { return } d.tokens = d.tokens[:0] } break Loop } } if d.index < d.maxInsertIndex { // Update the hash hash := hash4(d.window[d.index : d.index+minMatchLength]) hh := &d.hashHead[hash&hashMask] d.chainHead = int(*hh) d.hashPrev[d.index&windowMask] = uint32(d.chainHead) *hh = uint32(d.index + d.hashOffset) } prevLength := d.length prevOffset := d.offset d.length = minMatchLength - 1 d.offset = 0 minIndex := d.index - windowSize if minIndex < 0 { minIndex = 0 } if d.chainHead-d.hashOffset >= minIndex && (d.fastSkipHashing != skipNever && lookahead > minMatchLength-1 || d.fastSkipHashing == skipNever && lookahead > prevLength && prevLength < d.lazy) { if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok { d.length = newLength d.offset = newOffset } } if d.fastSkipHashing != skipNever && d.length >= minMatchLength || d.fastSkipHashing == skipNever && prevLength >= minMatchLength && d.length <= prevLength { // There was a match at the previous step, and the current match is // not better. Output the previous match. if d.fastSkipHashing != skipNever { d.tokens = append(d.tokens, matchToken(uint32(d.length-baseMatchLength), uint32(d.offset-baseMatchOffset))) } else { d.tokens = append(d.tokens, matchToken(uint32(prevLength-baseMatchLength), uint32(prevOffset-baseMatchOffset))) } // Insert in the hash table all strings up to the end of the match. // index and index-1 are already inserted. If there is not enough // lookahead, the last two strings are not inserted into the hash // table. if d.length <= d.fastSkipHashing { var newIndex int if d.fastSkipHashing != skipNever { newIndex = d.index + d.length } else { newIndex = d.index + prevLength - 1 } index := d.index for index++; index < newIndex; index++ { if index < d.maxInsertIndex { hash := hash4(d.window[index : index+minMatchLength]) // Get previous value with the same hash. // Our chain should point to the previous value. hh := &d.hashHead[hash&hashMask] d.hashPrev[index&windowMask] = *hh // Set the head of the hash chain to us. *hh = uint32(index + d.hashOffset) } } d.index = index if d.fastSkipHashing == skipNever { d.byteAvailable = false d.length = minMatchLength - 1 } } else { // For matches this long, we don't bother inserting each individual // item into the table. d.index += d.length } if len(d.tokens) == maxFlateBlockTokens { // The block includes the current character if d.err = d.writeBlock(d.tokens, d.index); d.err != nil { return } d.tokens = d.tokens[:0] } } else { if d.fastSkipHashing != skipNever || d.byteAvailable { i := d.index - 1 if d.fastSkipHashing != skipNever { i = d.index } d.tokens = append(d.tokens, literalToken(uint32(d.window[i]))) if len(d.tokens) == maxFlateBlockTokens { if d.err = d.writeBlock(d.tokens, i+1); d.err != nil { return } d.tokens = d.tokens[:0] } } d.index++ if d.fastSkipHashing == skipNever { d.byteAvailable = true } } } } func (d *compressor) fillStore(b []byte) int { n := copy(d.window[d.windowEnd:], b) d.windowEnd += n return n } func (d *compressor) store() { if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) { d.err = d.writeStoredBlock(d.window[:d.windowEnd]) d.windowEnd = 0 } } // storeHuff compresses and stores the currently added data // when the d.window is full or we are at the end of the stream. // Any error that occurred will be in d.err func (d *compressor) storeHuff() { if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 { return } d.w.writeBlockHuff(false, d.window[:d.windowEnd]) d.err = d.w.err d.windowEnd = 0 } func (d *compressor) write(b []byte) (n int, err error) { if d.err != nil { return 0, d.err } n = len(b) for len(b) > 0 { d.step(d) b = b[d.fill(d, b):] if d.err != nil { return 0, d.err } } return n, nil } func (d *compressor) syncFlush() error { if d.err != nil { return d.err } d.sync = true d.step(d) if d.err == nil { d.w.writeStoredHeader(0, false) d.w.flush() d.err = d.w.err } d.sync = false return d.err } func (d *compressor) init(w io.Writer, level int) (err error) { d.w = newHuffmanBitWriter(w) switch { case level == NoCompression: d.window = make([]byte, maxStoreBlockSize) d.fill = (*compressor).fillStore d.step = (*compressor).store case level == HuffmanOnly: d.window = make([]byte, maxStoreBlockSize) d.fill = (*compressor).fillStore d.step = (*compressor).storeHuff case level == BestSpeed: d.compressionLevel = levels[level] d.window = make([]byte, maxStoreBlockSize) d.fill = (*compressor).fillStore d.step = (*compressor).encSpeed d.bestSpeed = newDeflateFast() d.tokens = make([]token, maxStoreBlockSize) case level == DefaultCompression: level = 6 fallthrough case 2 <= level && level <= 9: d.compressionLevel = levels[level] d.initDeflate() d.fill = (*compressor).fillDeflate d.step = (*compressor).deflate default: return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level) } return nil } func (d *compressor) reset(w io.Writer) { d.w.reset(w) d.sync = false d.err = nil switch d.compressionLevel.level { case NoCompression: d.windowEnd = 0 case BestSpeed: d.windowEnd = 0 d.tokens = d.tokens[:0] d.bestSpeed.reset() default: d.chainHead = -1 for i := range d.hashHead { d.hashHead[i] = 0 } for i := range d.hashPrev { d.hashPrev[i] = 0 } d.hashOffset = 1 d.index, d.windowEnd = 0, 0 d.blockStart, d.byteAvailable = 0, false d.tokens = d.tokens[:0] d.length = minMatchLength - 1 d.offset = 0 d.maxInsertIndex = 0 } } func (d *compressor) close() error { if d.err == errWriterClosed { return nil } if d.err != nil { return d.err } d.sync = true d.step(d) if d.err != nil { return d.err } if d.w.writeStoredHeader(0, true); d.w.err != nil { return d.w.err } d.w.flush() if d.w.err != nil { return d.w.err } d.err = errWriterClosed return nil } // NewWriter returns a new [Writer] compressing data at the given level. // Following zlib, levels range from 1 ([BestSpeed]) to 9 ([BestCompression]); // higher levels typically run slower but compress more. Level 0 // ([NoCompression]) does not attempt any compression; it only adds the // necessary DEFLATE framing. // Level -1 ([DefaultCompression]) uses the default compression level. // Level -2 ([HuffmanOnly]) will use Huffman compression only, giving // a very fast compression for all types of input, but sacrificing considerable // compression efficiency. // // If level is in the range [-2, 9] then the error returned will be nil. // Otherwise the error returned will be non-nil. func NewWriter(w io.Writer, level int) (*Writer, error) { var dw Writer if err := dw.d.init(w, level); err != nil { return nil, err } return &dw, nil } // NewWriterDict is like [NewWriter] but initializes the new // [Writer] with a preset dictionary. The returned [Writer] behaves // as if the dictionary had been written to it without producing // any compressed output. The compressed data written to w // can only be decompressed by a [Reader] initialized with the // same dictionary. func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) { dw := &dictWriter{w} zw, err := NewWriter(dw, level) if err != nil { return nil, err } zw.d.fillWindow(dict) zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method. return zw, err } type dictWriter struct { w io.Writer } func (w *dictWriter) Write(b []byte) (n int, err error) { return w.w.Write(b) } var errWriterClosed = errors.New("flate: closed writer") // A Writer takes data written to it and writes the compressed // form of that data to an underlying writer (see [NewWriter]). type Writer struct { d compressor dict []byte } // Write writes data to w, which will eventually write the // compressed form of data to its underlying writer. func (w *Writer) Write(data []byte) (n int, err error) { return w.d.write(data) } // Flush flushes any pending data to the underlying writer. // It is useful mainly in compressed network protocols, to ensure that // a remote reader has enough data to reconstruct a packet. // Flush does not return until the data has been written. // Calling Flush when there is no pending data still causes the [Writer] // to emit a sync marker of at least 4 bytes. // If the underlying writer returns an error, Flush returns that error. // // In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH. func (w *Writer) Flush() error { // For more about flushing: // https://www.bolet.org/~pornin/deflate-flush.html return w.d.syncFlush() } // Close flushes and closes the writer. func (w *Writer) Close() error { return w.d.close() } // Reset discards the writer's state and makes it equivalent to // the result of [NewWriter] or [NewWriterDict] called with dst // and w's level and dictionary. func (w *Writer) Reset(dst io.Writer) { if dw, ok := w.d.w.writer.(*dictWriter); ok { // w was created with NewWriterDict dw.w = dst w.d.reset(dw) w.d.fillWindow(w.dict) } else { // w was created with NewWriter w.d.reset(dst) } }