// Copyright 2019 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ld import ( "cmd/internal/goobj" "cmd/internal/objabi" "cmd/internal/sys" "cmd/link/internal/loader" "cmd/link/internal/sym" "fmt" "internal/buildcfg" "strings" "unicode" ) var _ = fmt.Print type deadcodePass struct { ctxt *Link ldr *loader.Loader wq heap // work queue, using min-heap for better locality ifaceMethod map[methodsig]bool // methods called from reached interface call sites genericIfaceMethod map[string]bool // names of methods called from reached generic interface call sites markableMethods []methodref // methods of reached types reflectSeen bool // whether we have seen a reflect method call dynlink bool methodsigstmp []methodsig // scratch buffer for decoding method signatures pkginits []loader.Sym mapinitnoop loader.Sym } func (d *deadcodePass) init() { d.ldr.InitReachable() d.ifaceMethod = make(map[methodsig]bool) d.genericIfaceMethod = make(map[string]bool) if buildcfg.Experiment.FieldTrack { d.ldr.Reachparent = make([]loader.Sym, d.ldr.NSym()) } d.dynlink = d.ctxt.DynlinkingGo() if d.ctxt.BuildMode == BuildModeShared { // Mark all symbols defined in this library as reachable when // building a shared library. n := d.ldr.NDef() for i := 1; i < n; i++ { s := loader.Sym(i) d.mark(s, 0) } d.mark(d.ctxt.mainInittasks, 0) return } var names []string // In a normal binary, start at main.main and the init // functions and mark what is reachable from there. if d.ctxt.linkShared && (d.ctxt.BuildMode == BuildModeExe || d.ctxt.BuildMode == BuildModePIE) { names = append(names, "main.main", "main..inittask") } else { // The external linker refers main symbol directly. if d.ctxt.LinkMode == LinkExternal && (d.ctxt.BuildMode == BuildModeExe || d.ctxt.BuildMode == BuildModePIE) { if d.ctxt.HeadType == objabi.Hwindows && d.ctxt.Arch.Family == sys.I386 { *flagEntrySymbol = "_main" } else { *flagEntrySymbol = "main" } } names = append(names, *flagEntrySymbol) } // runtime.unreachableMethod is a function that will throw if called. // We redirect unreachable methods to it. names = append(names, "runtime.unreachableMethod") if d.ctxt.BuildMode == BuildModePlugin { names = append(names, objabi.PathToPrefix(*flagPluginPath)+"..inittask", objabi.PathToPrefix(*flagPluginPath)+".main", "go:plugin.tabs") // We don't keep the go.plugin.exports symbol, // but we do keep the symbols it refers to. exportsIdx := d.ldr.Lookup("go:plugin.exports", 0) if exportsIdx != 0 { relocs := d.ldr.Relocs(exportsIdx) for i := 0; i < relocs.Count(); i++ { d.mark(relocs.At(i).Sym(), 0) } } } if d.ctxt.Debugvlog > 1 { d.ctxt.Logf("deadcode start names: %v\n", names) } for _, name := range names { // Mark symbol as a data/ABI0 symbol. d.mark(d.ldr.Lookup(name, 0), 0) if abiInternalVer != 0 { // Also mark any Go functions (internal ABI). d.mark(d.ldr.Lookup(name, abiInternalVer), 0) } } // All dynamic exports are roots. for _, s := range d.ctxt.dynexp { if d.ctxt.Debugvlog > 1 { d.ctxt.Logf("deadcode start dynexp: %s<%d>\n", d.ldr.SymName(s), d.ldr.SymVersion(s)) } d.mark(s, 0) } d.mapinitnoop = d.ldr.Lookup("runtime.mapinitnoop", abiInternalVer) if d.mapinitnoop == 0 { panic("could not look up runtime.mapinitnoop") } if d.ctxt.mainInittasks != 0 { d.mark(d.ctxt.mainInittasks, 0) } } func (d *deadcodePass) flood() { var methods []methodref for !d.wq.empty() { symIdx := d.wq.pop() // Methods may be called via reflection. Give up on static analysis, // and mark all exported methods of all reachable types as reachable. d.reflectSeen = d.reflectSeen || d.ldr.IsReflectMethod(symIdx) isgotype := d.ldr.IsGoType(symIdx) relocs := d.ldr.Relocs(symIdx) var usedInIface bool if isgotype { if d.dynlink { // When dynamic linking, a type may be passed across DSO // boundary and get converted to interface at the other side. d.ldr.SetAttrUsedInIface(symIdx, true) } usedInIface = d.ldr.AttrUsedInIface(symIdx) } methods = methods[:0] for i := 0; i < relocs.Count(); i++ { r := relocs.At(i) if r.Weak() { convertWeakToStrong := false // When build with "-linkshared", we can't tell if the // interface method in itab will be used or not. // Ignore the weak attribute. if d.ctxt.linkShared && d.ldr.IsItab(symIdx) { convertWeakToStrong = true } // If the program uses plugins, we can no longer treat // relocs from pkg init functions to outlined map init // fragments as weak, since doing so can cause package // init clashes between the main program and the // plugin. See #62430 for more details. if d.ctxt.canUsePlugins && r.Type().IsDirectCall() { convertWeakToStrong = true } if !convertWeakToStrong { // skip this reloc continue } } t := r.Type() switch t { case objabi.R_METHODOFF: if i+2 >= relocs.Count() { panic("expect three consecutive R_METHODOFF relocs") } if usedInIface { methods = append(methods, methodref{src: symIdx, r: i}) // The method descriptor is itself a type descriptor, and // it can be used to reach other types, e.g. by using // reflect.Type.Method(i).Type.In(j). We need to traverse // its child types with UsedInIface set. (See also the // comment below.) rs := r.Sym() if !d.ldr.AttrUsedInIface(rs) { d.ldr.SetAttrUsedInIface(rs, true) if d.ldr.AttrReachable(rs) { d.ldr.SetAttrReachable(rs, false) d.mark(rs, symIdx) } } } i += 2 continue case objabi.R_USETYPE: // type symbol used for DWARF. we need to load the symbol but it may not // be otherwise reachable in the program. // do nothing for now as we still load all type symbols. continue case objabi.R_USEIFACE: // R_USEIFACE is a marker relocation that tells the linker the type is // converted to an interface, i.e. should have UsedInIface set. See the // comment below for why we need to unset the Reachable bit and re-mark it. rs := r.Sym() if d.ldr.IsItab(rs) { // This relocation can also point at an itab, in which case it // means "the _type field of that itab". rs = decodeItabType(d.ldr, d.ctxt.Arch, rs) } if !d.ldr.IsGoType(rs) && !d.ctxt.linkShared { panic(fmt.Sprintf("R_USEIFACE in %s references %s which is not a type or itab", d.ldr.SymName(symIdx), d.ldr.SymName(rs))) } if !d.ldr.AttrUsedInIface(rs) { d.ldr.SetAttrUsedInIface(rs, true) if d.ldr.AttrReachable(rs) { d.ldr.SetAttrReachable(rs, false) d.mark(rs, symIdx) } } continue case objabi.R_USEIFACEMETHOD: // R_USEIFACEMETHOD is a marker relocation that marks an interface // method as used. rs := r.Sym() if d.ctxt.linkShared && (d.ldr.SymType(rs) == sym.SDYNIMPORT || d.ldr.SymType(rs) == sym.Sxxx) { // Don't decode symbol from shared library (we'll mark all exported methods anyway). // We check for both SDYNIMPORT and Sxxx because name-mangled symbols haven't // been resolved at this point. continue } m := d.decodeIfaceMethod(d.ldr, d.ctxt.Arch, rs, r.Add()) if d.ctxt.Debugvlog > 1 { d.ctxt.Logf("reached iface method: %v\n", m) } d.ifaceMethod[m] = true continue case objabi.R_USENAMEDMETHOD: name := d.decodeGenericIfaceMethod(d.ldr, r.Sym()) if d.ctxt.Debugvlog > 1 { d.ctxt.Logf("reached generic iface method: %s\n", name) } d.genericIfaceMethod[name] = true continue // don't mark referenced symbol - it is not needed in the final binary. case objabi.R_INITORDER: // inittasks has already run, so any R_INITORDER links are now // superfluous - the only live inittask records are those which are // in a scheduled list somewhere (e.g. runtime.moduledata.inittasks). continue } rs := r.Sym() if isgotype && usedInIface && d.ldr.IsGoType(rs) && !d.ldr.AttrUsedInIface(rs) { // If a type is converted to an interface, it is possible to obtain an // interface with a "child" type of it using reflection (e.g. obtain an // interface of T from []chan T). We need to traverse its "child" types // with UsedInIface attribute set. // When visiting the child type (chan T in the example above), it will // have UsedInIface set, so it in turn will mark and (re)visit its children // (e.g. T above). // We unset the reachable bit here, so if the child type is already visited, // it will be visited again. // Note that a type symbol can be visited at most twice, one without // UsedInIface and one with. So termination is still guaranteed. d.ldr.SetAttrUsedInIface(rs, true) d.ldr.SetAttrReachable(rs, false) } d.mark(rs, symIdx) } naux := d.ldr.NAux(symIdx) for i := 0; i < naux; i++ { a := d.ldr.Aux(symIdx, i) if a.Type() == goobj.AuxGotype { // A symbol being reachable doesn't imply we need its // type descriptor. Don't mark it. continue } d.mark(a.Sym(), symIdx) } // Record sym if package init func (here naux != 0 is a cheap way // to check first if it is a function symbol). if naux != 0 && d.ldr.IsPkgInit(symIdx) { d.pkginits = append(d.pkginits, symIdx) } // Some host object symbols have an outer object, which acts like a // "carrier" symbol, or it holds all the symbols for a particular // section. We need to mark all "referenced" symbols from that carrier, // so we make sure we're pulling in all outer symbols, and their sub // symbols. This is not ideal, and these carrier/section symbols could // be removed. if d.ldr.IsExternal(symIdx) { d.mark(d.ldr.OuterSym(symIdx), symIdx) d.mark(d.ldr.SubSym(symIdx), symIdx) } if len(methods) != 0 { if !isgotype { panic("method found on non-type symbol") } // Decode runtime type information for type methods // to help work out which methods can be called // dynamically via interfaces. methodsigs := d.decodetypeMethods(d.ldr, d.ctxt.Arch, symIdx, &relocs) if len(methods) != len(methodsigs) { panic(fmt.Sprintf("%q has %d method relocations for %d methods", d.ldr.SymName(symIdx), len(methods), len(methodsigs))) } for i, m := range methodsigs { methods[i].m = m if d.ctxt.Debugvlog > 1 { d.ctxt.Logf("markable method: %v of sym %v %s\n", m, symIdx, d.ldr.SymName(symIdx)) } } d.markableMethods = append(d.markableMethods, methods...) } } } // mapinitcleanup walks all pkg init functions and looks for weak relocations // to mapinit symbols that are no longer reachable. It rewrites // the relocs to target a new no-op routine in the runtime. func (d *deadcodePass) mapinitcleanup() { for _, idx := range d.pkginits { relocs := d.ldr.Relocs(idx) var su *loader.SymbolBuilder for i := 0; i < relocs.Count(); i++ { r := relocs.At(i) rs := r.Sym() if r.Weak() && r.Type().IsDirectCall() && !d.ldr.AttrReachable(rs) { // double check to make sure target is indeed map.init rsn := d.ldr.SymName(rs) if !strings.Contains(rsn, "map.init") { panic(fmt.Sprintf("internal error: expected map.init sym for weak call reloc, got %s -> %s", d.ldr.SymName(idx), rsn)) } d.ldr.SetAttrReachable(d.mapinitnoop, true) if d.ctxt.Debugvlog > 1 { d.ctxt.Logf("deadcode: %s rewrite %s ref to %s\n", d.ldr.SymName(idx), rsn, d.ldr.SymName(d.mapinitnoop)) } if su == nil { su = d.ldr.MakeSymbolUpdater(idx) } su.SetRelocSym(i, d.mapinitnoop) } } } } func (d *deadcodePass) mark(symIdx, parent loader.Sym) { if symIdx != 0 && !d.ldr.AttrReachable(symIdx) { d.wq.push(symIdx) d.ldr.SetAttrReachable(symIdx, true) if buildcfg.Experiment.FieldTrack && d.ldr.Reachparent[symIdx] == 0 { d.ldr.Reachparent[symIdx] = parent } if *flagDumpDep { to := d.ldr.SymName(symIdx) if to != "" { to = d.dumpDepAddFlags(to, symIdx) from := "_" if parent != 0 { from = d.ldr.SymName(parent) from = d.dumpDepAddFlags(from, parent) } fmt.Printf("%s -> %s\n", from, to) } } } } func (d *deadcodePass) dumpDepAddFlags(name string, symIdx loader.Sym) string { var flags strings.Builder if d.ldr.AttrUsedInIface(symIdx) { flags.WriteString("") } if d.ldr.IsReflectMethod(symIdx) { flags.WriteString("") } if flags.Len() > 0 { return name + " " + flags.String() } return name } func (d *deadcodePass) markMethod(m methodref) { relocs := d.ldr.Relocs(m.src) d.mark(relocs.At(m.r).Sym(), m.src) d.mark(relocs.At(m.r+1).Sym(), m.src) d.mark(relocs.At(m.r+2).Sym(), m.src) } // deadcode marks all reachable symbols. // // The basis of the dead code elimination is a flood fill of symbols, // following their relocations, beginning at *flagEntrySymbol. // // This flood fill is wrapped in logic for pruning unused methods. // All methods are mentioned by relocations on their receiver's *rtype. // These relocations are specially defined as R_METHODOFF by the compiler // so we can detect and manipulated them here. // // There are three ways a method of a reachable type can be invoked: // // 1. direct call // 2. through a reachable interface type // 3. reflect.Value.Method (or MethodByName), or reflect.Type.Method // (or MethodByName) // // The first case is handled by the flood fill, a directly called method // is marked as reachable. // // The second case is handled by decomposing all reachable interface // types into method signatures. Each encountered method is compared // against the interface method signatures, if it matches it is marked // as reachable. This is extremely conservative, but easy and correct. // // The third case is handled by looking for functions that compiler flagged // as REFLECTMETHOD. REFLECTMETHOD on a function F means that F does a method // lookup with reflection, but the compiler was not able to statically determine // the method name. // // All functions that call reflect.Value.Method or reflect.Type.Method are REFLECTMETHODs. // Functions that call reflect.Value.MethodByName or reflect.Type.MethodByName with // a non-constant argument are REFLECTMETHODs, too. If we find a REFLECTMETHOD, // we give up on static analysis, and mark all exported methods of all reachable // types as reachable. // // If the argument to MethodByName is a compile-time constant, the compiler // emits a relocation with the method name. Matching methods are kept in all // reachable types. // // Any unreached text symbols are removed from ctxt.Textp. func deadcode(ctxt *Link) { ldr := ctxt.loader d := deadcodePass{ctxt: ctxt, ldr: ldr} d.init() d.flood() if ctxt.DynlinkingGo() { // Exported methods may satisfy interfaces we don't know // about yet when dynamically linking. d.reflectSeen = true } for { // Mark all methods that could satisfy a discovered // interface as reachable. We recheck old marked interfaces // as new types (with new methods) may have been discovered // in the last pass. rem := d.markableMethods[:0] for _, m := range d.markableMethods { if (d.reflectSeen && (m.isExported() || d.dynlink)) || d.ifaceMethod[m.m] || d.genericIfaceMethod[m.m.name] { d.markMethod(m) } else { rem = append(rem, m) } } d.markableMethods = rem if d.wq.empty() { // No new work was discovered. Done. break } d.flood() } if *flagPruneWeakMap { d.mapinitcleanup() } } // methodsig is a typed method signature (name + type). type methodsig struct { name string typ loader.Sym // type descriptor symbol of the function } // methodref holds the relocations from a receiver type symbol to its // method. There are three relocations, one for each of the fields in // the reflect.method struct: mtyp, ifn, and tfn. type methodref struct { m methodsig src loader.Sym // receiver type symbol r int // the index of R_METHODOFF relocations } func (m methodref) isExported() bool { for _, r := range m.m.name { return unicode.IsUpper(r) } panic("methodref has no signature") } // decodeMethodSig decodes an array of method signature information. // Each element of the array is size bytes. The first 4 bytes is a // nameOff for the method name, and the next 4 bytes is a typeOff for // the function type. // // Conveniently this is the layout of both runtime.method and runtime.imethod. func (d *deadcodePass) decodeMethodSig(ldr *loader.Loader, arch *sys.Arch, symIdx loader.Sym, relocs *loader.Relocs, off, size, count int) []methodsig { if cap(d.methodsigstmp) < count { d.methodsigstmp = append(d.methodsigstmp[:0], make([]methodsig, count)...) } var methods = d.methodsigstmp[:count] for i := 0; i < count; i++ { methods[i].name = decodetypeName(ldr, symIdx, relocs, off) methods[i].typ = decodeRelocSym(ldr, symIdx, relocs, int32(off+4)) off += size } return methods } // Decode the method of interface type symbol symIdx at offset off. func (d *deadcodePass) decodeIfaceMethod(ldr *loader.Loader, arch *sys.Arch, symIdx loader.Sym, off int64) methodsig { p := ldr.Data(symIdx) if p == nil { panic(fmt.Sprintf("missing symbol %q", ldr.SymName(symIdx))) } if decodetypeKind(arch, p)&kindMask != kindInterface { panic(fmt.Sprintf("symbol %q is not an interface", ldr.SymName(symIdx))) } relocs := ldr.Relocs(symIdx) var m methodsig m.name = decodetypeName(ldr, symIdx, &relocs, int(off)) m.typ = decodeRelocSym(ldr, symIdx, &relocs, int32(off+4)) return m } // Decode the method name stored in symbol symIdx. The symbol should contain just the bytes of a method name. func (d *deadcodePass) decodeGenericIfaceMethod(ldr *loader.Loader, symIdx loader.Sym) string { return ldr.DataString(symIdx) } func (d *deadcodePass) decodetypeMethods(ldr *loader.Loader, arch *sys.Arch, symIdx loader.Sym, relocs *loader.Relocs) []methodsig { p := ldr.Data(symIdx) if !decodetypeHasUncommon(arch, p) { panic(fmt.Sprintf("no methods on %q", ldr.SymName(symIdx))) } off := commonsize(arch) // reflect.rtype switch decodetypeKind(arch, p) & kindMask { case kindStruct: // reflect.structType off += 4 * arch.PtrSize case kindPtr: // reflect.ptrType off += arch.PtrSize case kindFunc: // reflect.funcType off += arch.PtrSize // 4 bytes, pointer aligned case kindSlice: // reflect.sliceType off += arch.PtrSize case kindArray: // reflect.arrayType off += 3 * arch.PtrSize case kindChan: // reflect.chanType off += 2 * arch.PtrSize case kindMap: // reflect.mapType off += 4*arch.PtrSize + 8 case kindInterface: // reflect.interfaceType off += 3 * arch.PtrSize default: // just Sizeof(rtype) } mcount := int(decodeInuxi(arch, p[off+4:], 2)) moff := int(decodeInuxi(arch, p[off+4+2+2:], 4)) off += moff // offset to array of reflect.method values const sizeofMethod = 4 * 4 // sizeof reflect.method in program return d.decodeMethodSig(ldr, arch, symIdx, relocs, off, sizeofMethod, mcount) }