// Derived from Inferno utils/6l/obj.c and utils/6l/span.c // https://bitbucket.org/inferno-os/inferno-os/src/master/utils/6l/obj.c // https://bitbucket.org/inferno-os/inferno-os/src/master/utils/6l/span.c // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package ld import ( "bytes" "cmd/internal/gcprog" "cmd/internal/objabi" "cmd/internal/sys" "cmd/link/internal/loader" "cmd/link/internal/loadpe" "cmd/link/internal/sym" "compress/zlib" "debug/elf" "encoding/binary" "fmt" "log" "os" "sort" "strconv" "strings" "sync" "sync/atomic" ) // isRuntimeDepPkg reports whether pkg is the runtime package or its dependency. func isRuntimeDepPkg(pkg string) bool { switch pkg { case "runtime", "sync/atomic", // runtime may call to sync/atomic, due to go:linkname "internal/abi", // used by reflectcall (and maybe more) "internal/bytealg", // for IndexByte "internal/chacha8rand", // for rand "internal/cpu": // for cpu features return true } return strings.HasPrefix(pkg, "runtime/internal/") && !strings.HasSuffix(pkg, "_test") } // Estimate the max size needed to hold any new trampolines created for this function. This // is used to determine when the section can be split if it becomes too large, to ensure that // the trampolines are in the same section as the function that uses them. func maxSizeTrampolines(ctxt *Link, ldr *loader.Loader, s loader.Sym, isTramp bool) uint64 { // If thearch.Trampoline is nil, then trampoline support is not available on this arch. // A trampoline does not need any dependent trampolines. if thearch.Trampoline == nil || isTramp { return 0 } n := uint64(0) relocs := ldr.Relocs(s) for ri := 0; ri < relocs.Count(); ri++ { r := relocs.At(ri) if r.Type().IsDirectCallOrJump() { n++ } } switch { case ctxt.IsARM(): return n * 20 // Trampolines in ARM range from 3 to 5 instructions. case ctxt.IsARM64(): return n * 12 // Trampolines in ARM64 are 3 instructions. case ctxt.IsPPC64(): return n * 16 // Trampolines in PPC64 are 4 instructions. case ctxt.IsRISCV64(): return n * 8 // Trampolines in RISCV64 are 2 instructions. } panic("unreachable") } // Detect too-far jumps in function s, and add trampolines if necessary. // ARM, PPC64, PPC64LE and RISCV64 support trampoline insertion for internal // and external linking. On PPC64 and PPC64LE the text sections might be split // but will still insert trampolines where necessary. func trampoline(ctxt *Link, s loader.Sym) { if thearch.Trampoline == nil { return // no need or no support of trampolines on this arch } ldr := ctxt.loader relocs := ldr.Relocs(s) for ri := 0; ri < relocs.Count(); ri++ { r := relocs.At(ri) rt := r.Type() if !rt.IsDirectCallOrJump() && !isPLTCall(rt) { continue } rs := r.Sym() if !ldr.AttrReachable(rs) || ldr.SymType(rs) == sym.Sxxx { continue // something is wrong. skip it here and we'll emit a better error later } if ldr.SymValue(rs) == 0 && ldr.SymType(rs) != sym.SDYNIMPORT && ldr.SymType(rs) != sym.SUNDEFEXT { // Symbols in the same package are laid out together. // Except that if SymPkg(s) == "", it is a host object symbol // which may call an external symbol via PLT. if ldr.SymPkg(s) != "" && ldr.SymPkg(rs) == ldr.SymPkg(s) { // RISC-V is only able to reach +/-1MiB via a JAL instruction. // We need to generate a trampoline when an address is // currently unknown. if !ctxt.Target.IsRISCV64() { continue } } // Runtime packages are laid out together. if isRuntimeDepPkg(ldr.SymPkg(s)) && isRuntimeDepPkg(ldr.SymPkg(rs)) { continue } } thearch.Trampoline(ctxt, ldr, ri, rs, s) } } // whether rt is a (host object) relocation that will be turned into // a call to PLT. func isPLTCall(rt objabi.RelocType) bool { const pcrel = 1 switch rt { // ARM64 case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_CALL26), objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_JUMP26), objabi.MachoRelocOffset + MACHO_ARM64_RELOC_BRANCH26*2 + pcrel: return true // ARM case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_CALL), objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_PC24), objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_JUMP24): return true } // TODO: other architectures. return false } // FoldSubSymbolOffset computes the offset of symbol s to its top-level outer // symbol. Returns the top-level symbol and the offset. // This is used in generating external relocations. func FoldSubSymbolOffset(ldr *loader.Loader, s loader.Sym) (loader.Sym, int64) { outer := ldr.OuterSym(s) off := int64(0) if outer != 0 { off += ldr.SymValue(s) - ldr.SymValue(outer) s = outer } return s, off } // relocsym resolve relocations in "s", updating the symbol's content // in "P". // The main loop walks through the list of relocations attached to "s" // and resolves them where applicable. Relocations are often // architecture-specific, requiring calls into the 'archreloc' and/or // 'archrelocvariant' functions for the architecture. When external // linking is in effect, it may not be possible to completely resolve // the address/offset for a symbol, in which case the goal is to lay // the groundwork for turning a given relocation into an external reloc // (to be applied by the external linker). For more on how relocations // work in general, see // // "Linkers and Loaders", by John R. Levine (Morgan Kaufmann, 1999), ch. 7 // // This is a performance-critical function for the linker; be careful // to avoid introducing unnecessary allocations in the main loop. func (st *relocSymState) relocsym(s loader.Sym, P []byte) { ldr := st.ldr relocs := ldr.Relocs(s) if relocs.Count() == 0 { return } target := st.target syms := st.syms nExtReloc := 0 // number of external relocations for ri := 0; ri < relocs.Count(); ri++ { r := relocs.At(ri) off := r.Off() siz := int32(r.Siz()) rs := r.Sym() rt := r.Type() weak := r.Weak() if off < 0 || off+siz > int32(len(P)) { rname := "" if rs != 0 { rname = ldr.SymName(rs) } st.err.Errorf(s, "invalid relocation %s: %d+%d not in [%d,%d)", rname, off, siz, 0, len(P)) continue } if siz == 0 { // informational relocation - no work to do continue } var rst sym.SymKind if rs != 0 { rst = ldr.SymType(rs) } if rs != 0 && (rst == sym.Sxxx || rst == sym.SXREF) { // When putting the runtime but not main into a shared library // these symbols are undefined and that's OK. if target.IsShared() || target.IsPlugin() { if ldr.SymName(rs) == "main.main" || (!target.IsPlugin() && ldr.SymName(rs) == "main..inittask") { sb := ldr.MakeSymbolUpdater(rs) sb.SetType(sym.SDYNIMPORT) } else if strings.HasPrefix(ldr.SymName(rs), "go:info.") { // Skip go.info symbols. They are only needed to communicate // DWARF info between the compiler and linker. continue } } else if target.IsPPC64() && ldr.SymName(rs) == ".TOC." { // TOC symbol doesn't have a type but we do assign a value // (see the address pass) and we can resolve it. // TODO: give it a type. } else { st.err.errorUnresolved(ldr, s, rs) continue } } if rt >= objabi.ElfRelocOffset { continue } // We need to be able to reference dynimport symbols when linking against // shared libraries, and AIX, Darwin, OpenBSD and Solaris always need it. if !target.IsAIX() && !target.IsDarwin() && !target.IsSolaris() && !target.IsOpenbsd() && rs != 0 && rst == sym.SDYNIMPORT && !target.IsDynlinkingGo() && !ldr.AttrSubSymbol(rs) { if !(target.IsPPC64() && target.IsExternal() && ldr.SymName(rs) == ".TOC.") { st.err.Errorf(s, "unhandled relocation for %s (type %d (%s) rtype %d (%s))", ldr.SymName(rs), rst, rst, rt, sym.RelocName(target.Arch, rt)) } } if rs != 0 && rst != sym.STLSBSS && !weak && rt != objabi.R_METHODOFF && !ldr.AttrReachable(rs) { st.err.Errorf(s, "unreachable sym in relocation: %s", ldr.SymName(rs)) } var rv sym.RelocVariant if target.IsPPC64() || target.IsS390X() { rv = ldr.RelocVariant(s, ri) } // TODO(mundaym): remove this special case - see issue 14218. if target.IsS390X() { switch rt { case objabi.R_PCRELDBL: rt = objabi.R_PCREL rv = sym.RV_390_DBL case objabi.R_CALL: rv = sym.RV_390_DBL } } var o int64 switch rt { default: switch siz { default: st.err.Errorf(s, "bad reloc size %#x for %s", uint32(siz), ldr.SymName(rs)) case 1: o = int64(P[off]) case 2: o = int64(target.Arch.ByteOrder.Uint16(P[off:])) case 4: o = int64(target.Arch.ByteOrder.Uint32(P[off:])) case 8: o = int64(target.Arch.ByteOrder.Uint64(P[off:])) } out, n, ok := thearch.Archreloc(target, ldr, syms, r, s, o) if target.IsExternal() { nExtReloc += n } if ok { o = out } else { st.err.Errorf(s, "unknown reloc to %v: %d (%s)", ldr.SymName(rs), rt, sym.RelocName(target.Arch, rt)) } case objabi.R_TLS_LE: if target.IsExternal() && target.IsElf() { nExtReloc++ o = 0 if !target.IsAMD64() { o = r.Add() } break } if target.IsElf() && target.IsARM() { // On ELF ARM, the thread pointer is 8 bytes before // the start of the thread-local data block, so add 8 // to the actual TLS offset (r->sym->value). // This 8 seems to be a fundamental constant of // ELF on ARM (or maybe Glibc on ARM); it is not // related to the fact that our own TLS storage happens // to take up 8 bytes. o = 8 + ldr.SymValue(rs) } else if target.IsElf() || target.IsPlan9() || target.IsDarwin() { o = int64(syms.Tlsoffset) + r.Add() } else if target.IsWindows() { o = r.Add() } else { log.Fatalf("unexpected R_TLS_LE relocation for %v", target.HeadType) } case objabi.R_TLS_IE: if target.IsExternal() && target.IsElf() { nExtReloc++ o = 0 if !target.IsAMD64() { o = r.Add() } if target.Is386() { nExtReloc++ // need two ELF relocations on 386, see ../x86/asm.go:elfreloc1 } break } if target.IsPIE() && target.IsElf() { // We are linking the final executable, so we // can optimize any TLS IE relocation to LE. if thearch.TLSIEtoLE == nil { log.Fatalf("internal linking of TLS IE not supported on %v", target.Arch.Family) } thearch.TLSIEtoLE(P, int(off), int(siz)) o = int64(syms.Tlsoffset) } else { log.Fatalf("cannot handle R_TLS_IE (sym %s) when linking internally", ldr.SymName(s)) } case objabi.R_ADDR, objabi.R_PEIMAGEOFF: if weak && !ldr.AttrReachable(rs) { // Redirect it to runtime.unreachableMethod, which will throw if called. rs = syms.unreachableMethod } if target.IsExternal() { nExtReloc++ // set up addend for eventual relocation via outer symbol. rs := rs rs, off := FoldSubSymbolOffset(ldr, rs) xadd := r.Add() + off rst := ldr.SymType(rs) if rst != sym.SHOSTOBJ && rst != sym.SDYNIMPORT && rst != sym.SUNDEFEXT && ldr.SymSect(rs) == nil { st.err.Errorf(s, "missing section for relocation target %s", ldr.SymName(rs)) } o = xadd if target.IsElf() { if target.IsAMD64() { o = 0 } } else if target.IsDarwin() { if ldr.SymType(s).IsDWARF() { // We generally use symbol-targeted relocations. // DWARF tools seem to only handle section-targeted relocations, // so generate section-targeted relocations in DWARF sections. // See also machoreloc1. o += ldr.SymValue(rs) } } else if target.IsWindows() { // nothing to do } else if target.IsAIX() { o = ldr.SymValue(rs) + xadd } else { st.err.Errorf(s, "unhandled pcrel relocation to %s on %v", ldr.SymName(rs), target.HeadType) } break } // On AIX, a second relocation must be done by the loader, // as section addresses can change once loaded. // The "default" symbol address is still needed by the loader so // the current relocation can't be skipped. if target.IsAIX() && rst != sym.SDYNIMPORT { // It's not possible to make a loader relocation in a // symbol which is not inside .data section. // FIXME: It should be forbidden to have R_ADDR from a // symbol which isn't in .data. However, as .text has the // same address once loaded, this is possible. if ldr.SymSect(s).Seg == &Segdata { Xcoffadddynrel(target, ldr, syms, s, r, ri) } } o = ldr.SymValue(rs) + r.Add() if rt == objabi.R_PEIMAGEOFF { // The R_PEIMAGEOFF offset is a RVA, so subtract // the base address for the executable. o -= PEBASE } // On amd64, 4-byte offsets will be sign-extended, so it is impossible to // access more than 2GB of static data; fail at link time is better than // fail at runtime. See https://golang.org/issue/7980. // Instead of special casing only amd64, we treat this as an error on all // 64-bit architectures so as to be future-proof. if int32(o) < 0 && target.Arch.PtrSize > 4 && siz == 4 { st.err.Errorf(s, "non-pc-relative relocation address for %s is too big: %#x (%#x + %#x)", ldr.SymName(rs), uint64(o), ldr.SymValue(rs), r.Add()) errorexit() } case objabi.R_DWARFSECREF: if ldr.SymSect(rs) == nil { st.err.Errorf(s, "missing DWARF section for relocation target %s", ldr.SymName(rs)) } if target.IsExternal() { // On most platforms, the external linker needs to adjust DWARF references // as it combines DWARF sections. However, on Darwin, dsymutil does the // DWARF linking, and it understands how to follow section offsets. // Leaving in the relocation records confuses it (see // https://golang.org/issue/22068) so drop them for Darwin. if !target.IsDarwin() { nExtReloc++ } xadd := r.Add() + ldr.SymValue(rs) - int64(ldr.SymSect(rs).Vaddr) o = xadd if target.IsElf() && target.IsAMD64() { o = 0 } break } o = ldr.SymValue(rs) + r.Add() - int64(ldr.SymSect(rs).Vaddr) case objabi.R_METHODOFF: if !ldr.AttrReachable(rs) { // Set it to a sentinel value. The runtime knows this is not pointing to // anything valid. o = -1 break } fallthrough case objabi.R_ADDROFF: if weak && !ldr.AttrReachable(rs) { continue } sect := ldr.SymSect(rs) if sect == nil { if rst == sym.SDYNIMPORT { st.err.Errorf(s, "cannot target DYNIMPORT sym in section-relative reloc: %s", ldr.SymName(rs)) } else if rst == sym.SUNDEFEXT { st.err.Errorf(s, "undefined symbol in relocation: %s", ldr.SymName(rs)) } else { st.err.Errorf(s, "missing section for relocation target %s", ldr.SymName(rs)) } continue } // The method offset tables using this relocation expect the offset to be relative // to the start of the first text section, even if there are multiple. if sect.Name == ".text" { o = ldr.SymValue(rs) - int64(Segtext.Sections[0].Vaddr) + r.Add() } else { o = ldr.SymValue(rs) - int64(ldr.SymSect(rs).Vaddr) + r.Add() } case objabi.R_ADDRCUOFF: // debug_range and debug_loc elements use this relocation type to get an // offset from the start of the compile unit. o = ldr.SymValue(rs) + r.Add() - ldr.SymValue(loader.Sym(ldr.SymUnit(rs).Textp[0])) // r.Sym() can be 0 when CALL $(constant) is transformed from absolute PC to relative PC call. case objabi.R_GOTPCREL: if target.IsDynlinkingGo() && target.IsDarwin() && rs != 0 { nExtReloc++ o = r.Add() break } if target.Is386() && target.IsExternal() && target.IsELF { nExtReloc++ // need two ELF relocations on 386, see ../x86/asm.go:elfreloc1 } fallthrough case objabi.R_CALL, objabi.R_PCREL: if target.IsExternal() && rs != 0 && rst == sym.SUNDEFEXT { // pass through to the external linker. nExtReloc++ o = 0 break } if target.IsExternal() && rs != 0 && (ldr.SymSect(rs) != ldr.SymSect(s) || rt == objabi.R_GOTPCREL) { nExtReloc++ // set up addend for eventual relocation via outer symbol. rs := rs rs, off := FoldSubSymbolOffset(ldr, rs) xadd := r.Add() + off - int64(siz) // relative to address after the relocated chunk rst := ldr.SymType(rs) if rst != sym.SHOSTOBJ && rst != sym.SDYNIMPORT && ldr.SymSect(rs) == nil { st.err.Errorf(s, "missing section for relocation target %s", ldr.SymName(rs)) } o = xadd if target.IsElf() { if target.IsAMD64() { o = 0 } } else if target.IsDarwin() { if rt == objabi.R_CALL { if target.IsExternal() && rst == sym.SDYNIMPORT { if target.IsAMD64() { // AMD64 dynamic relocations are relative to the end of the relocation. o += int64(siz) } } else { if rst != sym.SHOSTOBJ { o += int64(uint64(ldr.SymValue(rs)) - ldr.SymSect(rs).Vaddr) } o -= int64(off) // relative to section offset, not symbol } } else { o += int64(siz) } } else if target.IsWindows() && target.IsAMD64() { // only amd64 needs PCREL // PE/COFF's PC32 relocation uses the address after the relocated // bytes as the base. Compensate by skewing the addend. o += int64(siz) } else { st.err.Errorf(s, "unhandled pcrel relocation to %s on %v", ldr.SymName(rs), target.HeadType) } break } o = 0 if rs != 0 { o = ldr.SymValue(rs) } o += r.Add() - (ldr.SymValue(s) + int64(off) + int64(siz)) case objabi.R_SIZE: o = ldr.SymSize(rs) + r.Add() case objabi.R_XCOFFREF: if !target.IsAIX() { st.err.Errorf(s, "find XCOFF R_REF on non-XCOFF files") } if !target.IsExternal() { st.err.Errorf(s, "find XCOFF R_REF with internal linking") } nExtReloc++ continue case objabi.R_DWARFFILEREF: // We don't renumber files in dwarf.go:writelines anymore. continue case objabi.R_CONST: o = r.Add() case objabi.R_GOTOFF: o = ldr.SymValue(rs) + r.Add() - ldr.SymValue(syms.GOT) } if target.IsPPC64() || target.IsS390X() { if rv != sym.RV_NONE { o = thearch.Archrelocvariant(target, ldr, r, rv, s, o, P) } } switch siz { default: st.err.Errorf(s, "bad reloc size %#x for %s", uint32(siz), ldr.SymName(rs)) case 1: P[off] = byte(int8(o)) case 2: if (rt == objabi.R_PCREL || rt == objabi.R_CALL) && o != int64(int16(o)) { st.err.Errorf(s, "pc-relative relocation address for %s is too big: %#x", ldr.SymName(rs), o) } else if o != int64(int16(o)) && o != int64(uint16(o)) { st.err.Errorf(s, "non-pc-relative relocation address for %s is too big: %#x", ldr.SymName(rs), uint64(o)) } target.Arch.ByteOrder.PutUint16(P[off:], uint16(o)) case 4: if (rt == objabi.R_PCREL || rt == objabi.R_CALL) && o != int64(int32(o)) { st.err.Errorf(s, "pc-relative relocation address for %s is too big: %#x", ldr.SymName(rs), o) } else if o != int64(int32(o)) && o != int64(uint32(o)) { st.err.Errorf(s, "non-pc-relative relocation address for %s is too big: %#x", ldr.SymName(rs), uint64(o)) } target.Arch.ByteOrder.PutUint32(P[off:], uint32(o)) case 8: target.Arch.ByteOrder.PutUint64(P[off:], uint64(o)) } } if target.IsExternal() { // We'll stream out the external relocations in asmb2 (e.g. elfrelocsect) // and we only need the count here. atomic.AddUint32(&ldr.SymSect(s).Relcount, uint32(nExtReloc)) } } // Convert a Go relocation to an external relocation. func extreloc(ctxt *Link, ldr *loader.Loader, s loader.Sym, r loader.Reloc) (loader.ExtReloc, bool) { var rr loader.ExtReloc target := &ctxt.Target siz := int32(r.Siz()) if siz == 0 { // informational relocation - no work to do return rr, false } rt := r.Type() if rt >= objabi.ElfRelocOffset { return rr, false } rr.Type = rt rr.Size = uint8(siz) // TODO(mundaym): remove this special case - see issue 14218. if target.IsS390X() { switch rt { case objabi.R_PCRELDBL: rt = objabi.R_PCREL } } switch rt { default: return thearch.Extreloc(target, ldr, r, s) case objabi.R_TLS_LE, objabi.R_TLS_IE: if target.IsElf() { rs := r.Sym() rr.Xsym = rs if rr.Xsym == 0 { rr.Xsym = ctxt.Tlsg } rr.Xadd = r.Add() break } return rr, false case objabi.R_ADDR, objabi.R_PEIMAGEOFF: // set up addend for eventual relocation via outer symbol. rs := r.Sym() if r.Weak() && !ldr.AttrReachable(rs) { rs = ctxt.ArchSyms.unreachableMethod } rs, off := FoldSubSymbolOffset(ldr, rs) rr.Xadd = r.Add() + off rr.Xsym = rs case objabi.R_DWARFSECREF: // On most platforms, the external linker needs to adjust DWARF references // as it combines DWARF sections. However, on Darwin, dsymutil does the // DWARF linking, and it understands how to follow section offsets. // Leaving in the relocation records confuses it (see // https://golang.org/issue/22068) so drop them for Darwin. if target.IsDarwin() { return rr, false } rs := r.Sym() rr.Xsym = loader.Sym(ldr.SymSect(rs).Sym) rr.Xadd = r.Add() + ldr.SymValue(rs) - int64(ldr.SymSect(rs).Vaddr) // r.Sym() can be 0 when CALL $(constant) is transformed from absolute PC to relative PC call. case objabi.R_GOTPCREL, objabi.R_CALL, objabi.R_PCREL: rs := r.Sym() if rt == objabi.R_GOTPCREL && target.IsDynlinkingGo() && target.IsDarwin() && rs != 0 { rr.Xadd = r.Add() rr.Xadd -= int64(siz) // relative to address after the relocated chunk rr.Xsym = rs break } if rs != 0 && ldr.SymType(rs) == sym.SUNDEFEXT { // pass through to the external linker. rr.Xadd = 0 if target.IsElf() { rr.Xadd -= int64(siz) } rr.Xsym = rs break } if rs != 0 && (ldr.SymSect(rs) != ldr.SymSect(s) || rt == objabi.R_GOTPCREL) { // set up addend for eventual relocation via outer symbol. rs := rs rs, off := FoldSubSymbolOffset(ldr, rs) rr.Xadd = r.Add() + off rr.Xadd -= int64(siz) // relative to address after the relocated chunk rr.Xsym = rs break } return rr, false case objabi.R_XCOFFREF: return ExtrelocSimple(ldr, r), true // These reloc types don't need external relocations. case objabi.R_ADDROFF, objabi.R_METHODOFF, objabi.R_ADDRCUOFF, objabi.R_SIZE, objabi.R_CONST, objabi.R_GOTOFF: return rr, false } return rr, true } // ExtrelocSimple creates a simple external relocation from r, with the same // symbol and addend. func ExtrelocSimple(ldr *loader.Loader, r loader.Reloc) loader.ExtReloc { var rr loader.ExtReloc rs := r.Sym() rr.Xsym = rs rr.Xadd = r.Add() rr.Type = r.Type() rr.Size = r.Siz() return rr } // ExtrelocViaOuterSym creates an external relocation from r targeting the // outer symbol and folding the subsymbol's offset into the addend. func ExtrelocViaOuterSym(ldr *loader.Loader, r loader.Reloc, s loader.Sym) loader.ExtReloc { // set up addend for eventual relocation via outer symbol. var rr loader.ExtReloc rs := r.Sym() rs, off := FoldSubSymbolOffset(ldr, rs) rr.Xadd = r.Add() + off rst := ldr.SymType(rs) if rst != sym.SHOSTOBJ && rst != sym.SDYNIMPORT && rst != sym.SUNDEFEXT && ldr.SymSect(rs) == nil { ldr.Errorf(s, "missing section for %s", ldr.SymName(rs)) } rr.Xsym = rs rr.Type = r.Type() rr.Size = r.Siz() return rr } // relocSymState hold state information needed when making a series of // successive calls to relocsym(). The items here are invariant // (meaning that they are set up once initially and then don't change // during the execution of relocsym), with the exception of a slice // used to facilitate batch allocation of external relocations. Calls // to relocsym happen in parallel; the assumption is that each // parallel thread will have its own state object. type relocSymState struct { target *Target ldr *loader.Loader err *ErrorReporter syms *ArchSyms } // makeRelocSymState creates a relocSymState container object to // pass to relocsym(). If relocsym() calls happen in parallel, // each parallel thread should have its own state object. func (ctxt *Link) makeRelocSymState() *relocSymState { return &relocSymState{ target: &ctxt.Target, ldr: ctxt.loader, err: &ctxt.ErrorReporter, syms: &ctxt.ArchSyms, } } // windynrelocsym examines a text symbol 's' and looks for relocations // from it that correspond to references to symbols defined in DLLs, // then fixes up those relocations as needed. A reference to a symbol // XYZ from some DLL will fall into one of two categories: an indirect // ref via "__imp_XYZ", or a direct ref to "XYZ". Here's an example of // an indirect ref (this is an excerpt from objdump -ldr): // // 1c1: 48 89 c6 movq %rax, %rsi // 1c4: ff 15 00 00 00 00 callq *(%rip) // 00000000000001c6: IMAGE_REL_AMD64_REL32 __imp__errno // // In the assembly above, the code loads up the value of __imp_errno // and then does an indirect call to that value. // // Here is what a direct reference might look like: // // 137: e9 20 06 00 00 jmp 0x75c // 13c: e8 00 00 00 00 callq 0x141 // 000000000000013d: IMAGE_REL_AMD64_REL32 _errno // // The assembly below dispenses with the import symbol and just makes // a direct call to _errno. // // The code below handles indirect refs by redirecting the target of // the relocation from "__imp_XYZ" to "XYZ" (since the latter symbol // is what the Windows loader is expected to resolve). For direct refs // the call is redirected to a stub, where the stub first loads the // symbol and then direct an indirect call to that value. // // Note that for a given symbol (as above) it is perfectly legal to // have both direct and indirect references. func windynrelocsym(ctxt *Link, rel *loader.SymbolBuilder, s loader.Sym) error { var su *loader.SymbolBuilder relocs := ctxt.loader.Relocs(s) for ri := 0; ri < relocs.Count(); ri++ { r := relocs.At(ri) if r.IsMarker() { continue // skip marker relocations } targ := r.Sym() if targ == 0 { continue } if !ctxt.loader.AttrReachable(targ) { if r.Weak() { continue } return fmt.Errorf("dynamic relocation to unreachable symbol %s", ctxt.loader.SymName(targ)) } tgot := ctxt.loader.SymGot(targ) if tgot == loadpe.RedirectToDynImportGotToken { // Consistency check: name should be __imp_X sname := ctxt.loader.SymName(targ) if !strings.HasPrefix(sname, "__imp_") { return fmt.Errorf("internal error in windynrelocsym: redirect GOT token applied to non-import symbol %s", sname) } // Locate underlying symbol (which originally had type // SDYNIMPORT but has since been retyped to SWINDOWS). ds, err := loadpe.LookupBaseFromImport(targ, ctxt.loader, ctxt.Arch) if err != nil { return err } dstyp := ctxt.loader.SymType(ds) if dstyp != sym.SWINDOWS { return fmt.Errorf("internal error in windynrelocsym: underlying sym for %q has wrong type %s", sname, dstyp.String()) } // Redirect relocation to the dynimport. r.SetSym(ds) continue } tplt := ctxt.loader.SymPlt(targ) if tplt == loadpe.CreateImportStubPltToken { // Consistency check: don't want to see both PLT and GOT tokens. if tgot != -1 { return fmt.Errorf("internal error in windynrelocsym: invalid GOT setting %d for reloc to %s", tgot, ctxt.loader.SymName(targ)) } // make dynimport JMP table for PE object files. tplt := int32(rel.Size()) ctxt.loader.SetPlt(targ, tplt) if su == nil { su = ctxt.loader.MakeSymbolUpdater(s) } r.SetSym(rel.Sym()) r.SetAdd(int64(tplt)) // jmp *addr switch ctxt.Arch.Family { default: return fmt.Errorf("internal error in windynrelocsym: unsupported arch %v", ctxt.Arch.Family) case sys.I386: rel.AddUint8(0xff) rel.AddUint8(0x25) rel.AddAddrPlus(ctxt.Arch, targ, 0) rel.AddUint8(0x90) rel.AddUint8(0x90) case sys.AMD64: rel.AddUint8(0xff) rel.AddUint8(0x24) rel.AddUint8(0x25) rel.AddAddrPlus4(ctxt.Arch, targ, 0) rel.AddUint8(0x90) } } else if tplt >= 0 { if su == nil { su = ctxt.loader.MakeSymbolUpdater(s) } r.SetSym(rel.Sym()) r.SetAdd(int64(tplt)) } } return nil } // windynrelocsyms generates jump table to C library functions that will be // added later. windynrelocsyms writes the table into .rel symbol. func (ctxt *Link) windynrelocsyms() { if !(ctxt.IsWindows() && iscgo && ctxt.IsInternal()) { return } rel := ctxt.loader.CreateSymForUpdate(".rel", 0) rel.SetType(sym.STEXT) for _, s := range ctxt.Textp { if err := windynrelocsym(ctxt, rel, s); err != nil { ctxt.Errorf(s, "%v", err) } } ctxt.Textp = append(ctxt.Textp, rel.Sym()) } func dynrelocsym(ctxt *Link, s loader.Sym) { target := &ctxt.Target ldr := ctxt.loader syms := &ctxt.ArchSyms relocs := ldr.Relocs(s) for ri := 0; ri < relocs.Count(); ri++ { r := relocs.At(ri) if r.IsMarker() { continue // skip marker relocations } rSym := r.Sym() if r.Weak() && !ldr.AttrReachable(rSym) { continue } if ctxt.BuildMode == BuildModePIE && ctxt.LinkMode == LinkInternal { // It's expected that some relocations will be done // later by relocsym (R_TLS_LE, R_ADDROFF), so // don't worry if Adddynrel returns false. thearch.Adddynrel(target, ldr, syms, s, r, ri) continue } if rSym != 0 && ldr.SymType(rSym) == sym.SDYNIMPORT || r.Type() >= objabi.ElfRelocOffset { if rSym != 0 && !ldr.AttrReachable(rSym) { ctxt.Errorf(s, "dynamic relocation to unreachable symbol %s", ldr.SymName(rSym)) } if !thearch.Adddynrel(target, ldr, syms, s, r, ri) { ctxt.Errorf(s, "unsupported dynamic relocation for symbol %s (type=%d (%s) stype=%d (%s))", ldr.SymName(rSym), r.Type(), sym.RelocName(ctxt.Arch, r.Type()), ldr.SymType(rSym), ldr.SymType(rSym)) } } } } func (state *dodataState) dynreloc(ctxt *Link) { if ctxt.HeadType == objabi.Hwindows { return } // -d suppresses dynamic loader format, so we may as well not // compute these sections or mark their symbols as reachable. if *FlagD { return } for _, s := range ctxt.Textp { dynrelocsym(ctxt, s) } for _, syms := range state.data { for _, s := range syms { dynrelocsym(ctxt, s) } } if ctxt.IsELF { elfdynhash(ctxt) } } func CodeblkPad(ctxt *Link, out *OutBuf, addr int64, size int64, pad []byte) { writeBlocks(ctxt, out, ctxt.outSem, ctxt.loader, ctxt.Textp, addr, size, pad) } const blockSize = 1 << 20 // 1MB chunks written at a time. // writeBlocks writes a specified chunk of symbols to the output buffer. It // breaks the write up into ≥blockSize chunks to write them out, and schedules // as many goroutines as necessary to accomplish this task. This call then // blocks, waiting on the writes to complete. Note that we use the sem parameter // to limit the number of concurrent writes taking place. func writeBlocks(ctxt *Link, out *OutBuf, sem chan int, ldr *loader.Loader, syms []loader.Sym, addr, size int64, pad []byte) { for i, s := range syms { if ldr.SymValue(s) >= addr && !ldr.AttrSubSymbol(s) { syms = syms[i:] break } } var wg sync.WaitGroup max, lastAddr, written := int64(blockSize), addr+size, int64(0) for addr < lastAddr { // Find the last symbol we'd write. idx := -1 for i, s := range syms { if ldr.AttrSubSymbol(s) { continue } // If the next symbol's size would put us out of bounds on the total length, // stop looking. end := ldr.SymValue(s) + ldr.SymSize(s) if end > lastAddr { break } // We're gonna write this symbol. idx = i // If we cross over the max size, we've got enough symbols. if end > addr+max { break } } // If we didn't find any symbols to write, we're done here. if idx < 0 { break } // Compute the length to write, including padding. // We need to write to the end address (lastAddr), or the next symbol's // start address, whichever comes first. If there is no more symbols, // just write to lastAddr. This ensures we don't leave holes between the // blocks or at the end. length := int64(0) if idx+1 < len(syms) { // Find the next top-level symbol. // Skip over sub symbols so we won't split a container symbol // into two blocks. next := syms[idx+1] for ldr.AttrSubSymbol(next) { idx++ next = syms[idx+1] } length = ldr.SymValue(next) - addr } if length == 0 || length > lastAddr-addr { length = lastAddr - addr } // Start the block output operator. if o, err := out.View(uint64(out.Offset() + written)); err == nil { sem <- 1 wg.Add(1) go func(o *OutBuf, ldr *loader.Loader, syms []loader.Sym, addr, size int64, pad []byte) { writeBlock(ctxt, o, ldr, syms, addr, size, pad) wg.Done() <-sem }(o, ldr, syms, addr, length, pad) } else { // output not mmaped, don't parallelize. writeBlock(ctxt, out, ldr, syms, addr, length, pad) } // Prepare for the next loop. if idx != -1 { syms = syms[idx+1:] } written += length addr += length } wg.Wait() } func writeBlock(ctxt *Link, out *OutBuf, ldr *loader.Loader, syms []loader.Sym, addr, size int64, pad []byte) { st := ctxt.makeRelocSymState() // This doesn't distinguish the memory size from the file // size, and it lays out the file based on Symbol.Value, which // is the virtual address. DWARF compression changes file sizes, // so dwarfcompress will fix this up later if necessary. eaddr := addr + size for _, s := range syms { if ldr.AttrSubSymbol(s) { continue } val := ldr.SymValue(s) if val >= eaddr { break } if val < addr { ldr.Errorf(s, "phase error: addr=%#x but val=%#x sym=%s type=%v sect=%v sect.addr=%#x", addr, val, ldr.SymName(s), ldr.SymType(s), ldr.SymSect(s).Name, ldr.SymSect(s).Vaddr) errorexit() } if addr < val { out.WriteStringPad("", int(val-addr), pad) addr = val } P := out.WriteSym(ldr, s) st.relocsym(s, P) if ldr.IsGeneratedSym(s) { f := ctxt.generatorSyms[s] f(ctxt, s) } addr += int64(len(P)) siz := ldr.SymSize(s) if addr < val+siz { out.WriteStringPad("", int(val+siz-addr), pad) addr = val + siz } if addr != val+siz { ldr.Errorf(s, "phase error: addr=%#x value+size=%#x", addr, val+siz) errorexit() } if val+siz >= eaddr { break } } if addr < eaddr { out.WriteStringPad("", int(eaddr-addr), pad) } } type writeFn func(*Link, *OutBuf, int64, int64) // writeParallel handles scheduling parallel execution of data write functions. func writeParallel(wg *sync.WaitGroup, fn writeFn, ctxt *Link, seek, vaddr, length uint64) { if out, err := ctxt.Out.View(seek); err != nil { ctxt.Out.SeekSet(int64(seek)) fn(ctxt, ctxt.Out, int64(vaddr), int64(length)) } else { wg.Add(1) go func() { defer wg.Done() fn(ctxt, out, int64(vaddr), int64(length)) }() } } func datblk(ctxt *Link, out *OutBuf, addr, size int64) { writeDatblkToOutBuf(ctxt, out, addr, size) } // Used only on Wasm for now. func DatblkBytes(ctxt *Link, addr int64, size int64) []byte { buf := make([]byte, size) out := &OutBuf{heap: buf} writeDatblkToOutBuf(ctxt, out, addr, size) return buf } func writeDatblkToOutBuf(ctxt *Link, out *OutBuf, addr int64, size int64) { writeBlocks(ctxt, out, ctxt.outSem, ctxt.loader, ctxt.datap, addr, size, zeros[:]) } func dwarfblk(ctxt *Link, out *OutBuf, addr int64, size int64) { // Concatenate the section symbol lists into a single list to pass // to writeBlocks. // // NB: ideally we would do a separate writeBlocks call for each // section, but this would run the risk of undoing any file offset // adjustments made during layout. n := 0 for i := range dwarfp { n += len(dwarfp[i].syms) } syms := make([]loader.Sym, 0, n) for i := range dwarfp { syms = append(syms, dwarfp[i].syms...) } writeBlocks(ctxt, out, ctxt.outSem, ctxt.loader, syms, addr, size, zeros[:]) } func pdatablk(ctxt *Link, out *OutBuf, addr int64, size int64) { writeBlocks(ctxt, out, ctxt.outSem, ctxt.loader, sehp.pdata, addr, size, zeros[:]) } func xdatablk(ctxt *Link, out *OutBuf, addr int64, size int64) { writeBlocks(ctxt, out, ctxt.outSem, ctxt.loader, sehp.xdata, addr, size, zeros[:]) } var covCounterDataStartOff, covCounterDataLen uint64 var zeros [512]byte var ( strdata = make(map[string]string) strnames []string ) func addstrdata1(ctxt *Link, arg string) { eq := strings.Index(arg, "=") dot := strings.LastIndex(arg[:eq+1], ".") if eq < 0 || dot < 0 { Exitf("-X flag requires argument of the form importpath.name=value") } pkg := arg[:dot] if ctxt.BuildMode == BuildModePlugin && pkg == "main" { pkg = *flagPluginPath } pkg = objabi.PathToPrefix(pkg) name := pkg + arg[dot:eq] value := arg[eq+1:] if _, ok := strdata[name]; !ok { strnames = append(strnames, name) } strdata[name] = value } // addstrdata sets the initial value of the string variable name to value. func addstrdata(arch *sys.Arch, l *loader.Loader, name, value string) { s := l.Lookup(name, 0) if s == 0 { return } if goType := l.SymGoType(s); goType == 0 { return } else if typeName := l.SymName(goType); typeName != "type:string" { Errorf(nil, "%s: cannot set with -X: not a var of type string (%s)", name, typeName) return } if !l.AttrReachable(s) { return // don't bother setting unreachable variable } bld := l.MakeSymbolUpdater(s) if bld.Type() == sym.SBSS { bld.SetType(sym.SDATA) } p := fmt.Sprintf("%s.str", name) sbld := l.CreateSymForUpdate(p, 0) sbld.Addstring(value) sbld.SetType(sym.SRODATA) // Don't reset the variable's size. String variable usually has size of // 2*PtrSize, but in ASAN build it can be larger due to red zone. // (See issue 56175.) bld.SetData(make([]byte, arch.PtrSize*2)) bld.SetReadOnly(false) bld.ResetRelocs() bld.SetAddrPlus(arch, 0, sbld.Sym(), 0) bld.SetUint(arch, int64(arch.PtrSize), uint64(len(value))) } func (ctxt *Link) dostrdata() { for _, name := range strnames { addstrdata(ctxt.Arch, ctxt.loader, name, strdata[name]) } } // addgostring adds str, as a Go string value, to s. symname is the name of the // symbol used to define the string data and must be unique per linked object. func addgostring(ctxt *Link, ldr *loader.Loader, s *loader.SymbolBuilder, symname, str string) { sdata := ldr.CreateSymForUpdate(symname, 0) if sdata.Type() != sym.Sxxx { ctxt.Errorf(s.Sym(), "duplicate symname in addgostring: %s", symname) } sdata.SetLocal(true) sdata.SetType(sym.SRODATA) sdata.SetSize(int64(len(str))) sdata.SetData([]byte(str)) s.AddAddr(ctxt.Arch, sdata.Sym()) s.AddUint(ctxt.Arch, uint64(len(str))) } func addinitarrdata(ctxt *Link, ldr *loader.Loader, s loader.Sym) { p := ldr.SymName(s) + ".ptr" sp := ldr.CreateSymForUpdate(p, 0) sp.SetType(sym.SINITARR) sp.SetSize(0) sp.SetDuplicateOK(true) sp.AddAddr(ctxt.Arch, s) } // symalign returns the required alignment for the given symbol s. func symalign(ldr *loader.Loader, s loader.Sym) int32 { min := int32(thearch.Minalign) align := ldr.SymAlign(s) if align >= min { return align } else if align != 0 { return min } align = int32(thearch.Maxalign) ssz := ldr.SymSize(s) for int64(align) > ssz && align > min { align >>= 1 } ldr.SetSymAlign(s, align) return align } func aligndatsize(state *dodataState, datsize int64, s loader.Sym) int64 { return Rnd(datsize, int64(symalign(state.ctxt.loader, s))) } const debugGCProg = false type GCProg struct { ctxt *Link sym *loader.SymbolBuilder w gcprog.Writer } func (p *GCProg) Init(ctxt *Link, name string) { p.ctxt = ctxt p.sym = ctxt.loader.CreateSymForUpdate(name, 0) p.w.Init(p.writeByte()) if debugGCProg { fmt.Fprintf(os.Stderr, "ld: start GCProg %s\n", name) p.w.Debug(os.Stderr) } } func (p *GCProg) writeByte() func(x byte) { return func(x byte) { p.sym.AddUint8(x) } } func (p *GCProg) End(size int64) { p.w.ZeroUntil(size / int64(p.ctxt.Arch.PtrSize)) p.w.End() if debugGCProg { fmt.Fprintf(os.Stderr, "ld: end GCProg\n") } } func (p *GCProg) AddSym(s loader.Sym) { ldr := p.ctxt.loader typ := ldr.SymGoType(s) // Things without pointers should be in sym.SNOPTRDATA or sym.SNOPTRBSS; // everything we see should have pointers and should therefore have a type. if typ == 0 { switch ldr.SymName(s) { case "runtime.data", "runtime.edata", "runtime.bss", "runtime.ebss": // Ignore special symbols that are sometimes laid out // as real symbols. See comment about dyld on darwin in // the address function. return } p.ctxt.Errorf(p.sym.Sym(), "missing Go type information for global symbol %s: size %d", ldr.SymName(s), ldr.SymSize(s)) return } ptrsize := int64(p.ctxt.Arch.PtrSize) typData := ldr.Data(typ) nptr := decodetypePtrdata(p.ctxt.Arch, typData) / ptrsize if debugGCProg { fmt.Fprintf(os.Stderr, "gcprog sym: %s at %d (ptr=%d+%d)\n", ldr.SymName(s), ldr.SymValue(s), ldr.SymValue(s)/ptrsize, nptr) } sval := ldr.SymValue(s) if decodetypeUsegcprog(p.ctxt.Arch, typData) == 0 { // Copy pointers from mask into program. mask := decodetypeGcmask(p.ctxt, typ) for i := int64(0); i < nptr; i++ { if (mask[i/8]>>uint(i%8))&1 != 0 { p.w.Ptr(sval/ptrsize + i) } } return } // Copy program. prog := decodetypeGcprog(p.ctxt, typ) p.w.ZeroUntil(sval / ptrsize) p.w.Append(prog[4:], nptr) } // cutoff is the maximum data section size permitted by the linker // (see issue #9862). const cutoff = 2e9 // 2 GB (or so; looks better in errors than 2^31) // check accumulated size of data sections func (state *dodataState) checkdatsize(symn sym.SymKind) { if state.datsize > cutoff { Errorf(nil, "too much data, last section %v (%d, over %v bytes)", symn, state.datsize, cutoff) } } func checkSectSize(sect *sym.Section) { // TODO: consider using 4 GB size limit for DWARF sections, and // make sure we generate unsigned offset in relocations and check // for overflow. if sect.Length > cutoff { Errorf(nil, "too much data in section %s (%d, over %v bytes)", sect.Name, sect.Length, cutoff) } } // fixZeroSizedSymbols gives a few special symbols with zero size some space. func fixZeroSizedSymbols(ctxt *Link) { // The values in moduledata are filled out by relocations // pointing to the addresses of these special symbols. // Typically these symbols have no size and are not laid // out with their matching section. // // However on darwin, dyld will find the special symbol // in the first loaded module, even though it is local. // // (An hypothesis, formed without looking in the dyld sources: // these special symbols have no size, so their address // matches a real symbol. The dynamic linker assumes we // want the normal symbol with the same address and finds // it in the other module.) // // To work around this we lay out the symbls whose // addresses are vital for multi-module programs to work // as normal symbols, and give them a little size. // // On AIX, as all DATA sections are merged together, ld might not put // these symbols at the beginning of their respective section if there // aren't real symbols, their alignment might not match the // first symbol alignment. Therefore, there are explicitly put at the // beginning of their section with the same alignment. if !(ctxt.DynlinkingGo() && ctxt.HeadType == objabi.Hdarwin) && !(ctxt.HeadType == objabi.Haix && ctxt.LinkMode == LinkExternal) { return } ldr := ctxt.loader bss := ldr.CreateSymForUpdate("runtime.bss", 0) bss.SetSize(8) ldr.SetAttrSpecial(bss.Sym(), false) ebss := ldr.CreateSymForUpdate("runtime.ebss", 0) ldr.SetAttrSpecial(ebss.Sym(), false) data := ldr.CreateSymForUpdate("runtime.data", 0) data.SetSize(8) ldr.SetAttrSpecial(data.Sym(), false) edata := ldr.CreateSymForUpdate("runtime.edata", 0) ldr.SetAttrSpecial(edata.Sym(), false) if ctxt.HeadType == objabi.Haix { // XCOFFTOC symbols are part of .data section. edata.SetType(sym.SXCOFFTOC) } noptrbss := ldr.CreateSymForUpdate("runtime.noptrbss", 0) noptrbss.SetSize(8) ldr.SetAttrSpecial(noptrbss.Sym(), false) enoptrbss := ldr.CreateSymForUpdate("runtime.enoptrbss", 0) ldr.SetAttrSpecial(enoptrbss.Sym(), false) noptrdata := ldr.CreateSymForUpdate("runtime.noptrdata", 0) noptrdata.SetSize(8) ldr.SetAttrSpecial(noptrdata.Sym(), false) enoptrdata := ldr.CreateSymForUpdate("runtime.enoptrdata", 0) ldr.SetAttrSpecial(enoptrdata.Sym(), false) types := ldr.CreateSymForUpdate("runtime.types", 0) types.SetType(sym.STYPE) types.SetSize(8) ldr.SetAttrSpecial(types.Sym(), false) etypes := ldr.CreateSymForUpdate("runtime.etypes", 0) etypes.SetType(sym.SFUNCTAB) ldr.SetAttrSpecial(etypes.Sym(), false) if ctxt.HeadType == objabi.Haix { rodata := ldr.CreateSymForUpdate("runtime.rodata", 0) rodata.SetType(sym.SSTRING) rodata.SetSize(8) ldr.SetAttrSpecial(rodata.Sym(), false) erodata := ldr.CreateSymForUpdate("runtime.erodata", 0) ldr.SetAttrSpecial(erodata.Sym(), false) } } // makeRelroForSharedLib creates a section of readonly data if necessary. func (state *dodataState) makeRelroForSharedLib(target *Link) { if !target.UseRelro() { return } // "read only" data with relocations needs to go in its own section // when building a shared library. We do this by boosting objects of // type SXXX with relocations to type SXXXRELRO. ldr := target.loader for _, symnro := range sym.ReadOnly { symnrelro := sym.RelROMap[symnro] ro := []loader.Sym{} relro := state.data[symnrelro] for _, s := range state.data[symnro] { relocs := ldr.Relocs(s) isRelro := relocs.Count() > 0 switch state.symType(s) { case sym.STYPE, sym.STYPERELRO, sym.SGOFUNCRELRO: // Symbols are not sorted yet, so it is possible // that an Outer symbol has been changed to a // relro Type before it reaches here. isRelro = true case sym.SFUNCTAB: if ldr.SymName(s) == "runtime.etypes" { // runtime.etypes must be at the end of // the relro data. isRelro = true } case sym.SGOFUNC: // The only SGOFUNC symbols that contain relocations are .stkobj, // and their relocations are of type objabi.R_ADDROFF, // which always get resolved during linking. isRelro = false } if isRelro { state.setSymType(s, symnrelro) if outer := ldr.OuterSym(s); outer != 0 { state.setSymType(outer, symnrelro) } relro = append(relro, s) } else { ro = append(ro, s) } } // Check that we haven't made two symbols with the same .Outer into // different types (because references two symbols with non-nil Outer // become references to the outer symbol + offset it's vital that the // symbol and the outer end up in the same section). for _, s := range relro { if outer := ldr.OuterSym(s); outer != 0 { st := state.symType(s) ost := state.symType(outer) if st != ost { state.ctxt.Errorf(s, "inconsistent types for symbol and its Outer %s (%v != %v)", ldr.SymName(outer), st, ost) } } } state.data[symnro] = ro state.data[symnrelro] = relro } } // dodataState holds bits of state information needed by dodata() and the // various helpers it calls. The lifetime of these items should not extend // past the end of dodata(). type dodataState struct { // Link context ctxt *Link // Data symbols bucketed by type. data [sym.SXREF][]loader.Sym // Max alignment for each flavor of data symbol. dataMaxAlign [sym.SXREF]int32 // Overridden sym type symGroupType []sym.SymKind // Current data size so far. datsize int64 } // A note on symType/setSymType below: // // In the legacy linker, the types of symbols (notably data symbols) are // changed during the symtab() phase so as to insure that similar symbols // are bucketed together, then their types are changed back again during // dodata. Symbol to section assignment also plays tricks along these lines // in the case where a relro segment is needed. // // The value returned from setType() below reflects the effects of // any overrides made by symtab and/or dodata. // symType returns the (possibly overridden) type of 's'. func (state *dodataState) symType(s loader.Sym) sym.SymKind { if int(s) < len(state.symGroupType) { if override := state.symGroupType[s]; override != 0 { return override } } return state.ctxt.loader.SymType(s) } // setSymType sets a new override type for 's'. func (state *dodataState) setSymType(s loader.Sym, kind sym.SymKind) { if s == 0 { panic("bad") } if int(s) < len(state.symGroupType) { state.symGroupType[s] = kind } else { su := state.ctxt.loader.MakeSymbolUpdater(s) su.SetType(kind) } } func (ctxt *Link) dodata(symGroupType []sym.SymKind) { // Give zeros sized symbols space if necessary. fixZeroSizedSymbols(ctxt) // Collect data symbols by type into data. state := dodataState{ctxt: ctxt, symGroupType: symGroupType} ldr := ctxt.loader for s := loader.Sym(1); s < loader.Sym(ldr.NSym()); s++ { if !ldr.AttrReachable(s) || ldr.AttrSpecial(s) || ldr.AttrSubSymbol(s) || !ldr.TopLevelSym(s) { continue } st := state.symType(s) if st <= sym.STEXT || st >= sym.SXREF { continue } state.data[st] = append(state.data[st], s) // Similarly with checking the onlist attr. if ldr.AttrOnList(s) { log.Fatalf("symbol %s listed multiple times", ldr.SymName(s)) } ldr.SetAttrOnList(s, true) } // Now that we have the data symbols, but before we start // to assign addresses, record all the necessary // dynamic relocations. These will grow the relocation // symbol, which is itself data. // // On darwin, we need the symbol table numbers for dynreloc. if ctxt.HeadType == objabi.Hdarwin { machosymorder(ctxt) } state.dynreloc(ctxt) // Move any RO data with relocations to a separate section. state.makeRelroForSharedLib(ctxt) // Set alignment for the symbol with the largest known index, // so as to trigger allocation of the loader's internal // alignment array. This will avoid data races in the parallel // section below. lastSym := loader.Sym(ldr.NSym() - 1) ldr.SetSymAlign(lastSym, ldr.SymAlign(lastSym)) // Sort symbols. var wg sync.WaitGroup for symn := range state.data { symn := sym.SymKind(symn) wg.Add(1) go func() { state.data[symn], state.dataMaxAlign[symn] = state.dodataSect(ctxt, symn, state.data[symn]) wg.Done() }() } wg.Wait() if ctxt.IsELF { // Make .rela and .rela.plt contiguous, the ELF ABI requires this // and Solaris actually cares. syms := state.data[sym.SELFROSECT] reli, plti := -1, -1 for i, s := range syms { switch ldr.SymName(s) { case ".rel.plt", ".rela.plt": plti = i case ".rel", ".rela": reli = i } } if reli >= 0 && plti >= 0 && plti != reli+1 { var first, second int if plti > reli { first, second = reli, plti } else { first, second = plti, reli } rel, plt := syms[reli], syms[plti] copy(syms[first+2:], syms[first+1:second]) syms[first+0] = rel syms[first+1] = plt // Make sure alignment doesn't introduce a gap. // Setting the alignment explicitly prevents // symalign from basing it on the size and // getting it wrong. ldr.SetSymAlign(rel, int32(ctxt.Arch.RegSize)) ldr.SetSymAlign(plt, int32(ctxt.Arch.RegSize)) } state.data[sym.SELFROSECT] = syms } if ctxt.HeadType == objabi.Haix && ctxt.LinkMode == LinkExternal { // These symbols must have the same alignment as their section. // Otherwise, ld might change the layout of Go sections. ldr.SetSymAlign(ldr.Lookup("runtime.data", 0), state.dataMaxAlign[sym.SDATA]) ldr.SetSymAlign(ldr.Lookup("runtime.bss", 0), state.dataMaxAlign[sym.SBSS]) } // Create *sym.Section objects and assign symbols to sections for // data/rodata (and related) symbols. state.allocateDataSections(ctxt) state.allocateSEHSections(ctxt) // Create *sym.Section objects and assign symbols to sections for // DWARF symbols. state.allocateDwarfSections(ctxt) /* number the sections */ n := int16(1) for _, sect := range Segtext.Sections { sect.Extnum = n n++ } for _, sect := range Segrodata.Sections { sect.Extnum = n n++ } for _, sect := range Segrelrodata.Sections { sect.Extnum = n n++ } for _, sect := range Segdata.Sections { sect.Extnum = n n++ } for _, sect := range Segdwarf.Sections { sect.Extnum = n n++ } for _, sect := range Segpdata.Sections { sect.Extnum = n n++ } for _, sect := range Segxdata.Sections { sect.Extnum = n n++ } } // allocateDataSectionForSym creates a new sym.Section into which a // single symbol will be placed. Here "seg" is the segment into which // the section will go, "s" is the symbol to be placed into the new // section, and "rwx" contains permissions for the section. func (state *dodataState) allocateDataSectionForSym(seg *sym.Segment, s loader.Sym, rwx int) *sym.Section { ldr := state.ctxt.loader sname := ldr.SymName(s) if strings.HasPrefix(sname, "go:") { sname = ".go." + sname[len("go:"):] } sect := addsection(ldr, state.ctxt.Arch, seg, sname, rwx) sect.Align = symalign(ldr, s) state.datsize = Rnd(state.datsize, int64(sect.Align)) sect.Vaddr = uint64(state.datsize) return sect } // allocateNamedDataSection creates a new sym.Section for a category // of data symbols. Here "seg" is the segment into which the section // will go, "sName" is the name to give to the section, "types" is a // range of symbol types to be put into the section, and "rwx" // contains permissions for the section. func (state *dodataState) allocateNamedDataSection(seg *sym.Segment, sName string, types []sym.SymKind, rwx int) *sym.Section { sect := addsection(state.ctxt.loader, state.ctxt.Arch, seg, sName, rwx) if len(types) == 0 { sect.Align = 1 } else if len(types) == 1 { sect.Align = state.dataMaxAlign[types[0]] } else { for _, symn := range types { align := state.dataMaxAlign[symn] if sect.Align < align { sect.Align = align } } } state.datsize = Rnd(state.datsize, int64(sect.Align)) sect.Vaddr = uint64(state.datsize) return sect } // assignDsymsToSection assigns a collection of data symbols to a // newly created section. "sect" is the section into which to place // the symbols, "syms" holds the list of symbols to assign, // "forceType" (if non-zero) contains a new sym type to apply to each // sym during the assignment, and "aligner" is a hook to call to // handle alignment during the assignment process. func (state *dodataState) assignDsymsToSection(sect *sym.Section, syms []loader.Sym, forceType sym.SymKind, aligner func(state *dodataState, datsize int64, s loader.Sym) int64) { ldr := state.ctxt.loader for _, s := range syms { state.datsize = aligner(state, state.datsize, s) ldr.SetSymSect(s, sect) if forceType != sym.Sxxx { state.setSymType(s, forceType) } ldr.SetSymValue(s, int64(uint64(state.datsize)-sect.Vaddr)) state.datsize += ldr.SymSize(s) } sect.Length = uint64(state.datsize) - sect.Vaddr } func (state *dodataState) assignToSection(sect *sym.Section, symn sym.SymKind, forceType sym.SymKind) { state.assignDsymsToSection(sect, state.data[symn], forceType, aligndatsize) state.checkdatsize(symn) } // allocateSingleSymSections walks through the bucketed data symbols // with type 'symn', creates a new section for each sym, and assigns // the sym to a newly created section. Section name is set from the // symbol name. "Seg" is the segment into which to place the new // section, "forceType" is the new sym.SymKind to assign to the symbol // within the section, and "rwx" holds section permissions. func (state *dodataState) allocateSingleSymSections(seg *sym.Segment, symn sym.SymKind, forceType sym.SymKind, rwx int) { ldr := state.ctxt.loader for _, s := range state.data[symn] { sect := state.allocateDataSectionForSym(seg, s, rwx) ldr.SetSymSect(s, sect) state.setSymType(s, forceType) ldr.SetSymValue(s, int64(uint64(state.datsize)-sect.Vaddr)) state.datsize += ldr.SymSize(s) sect.Length = uint64(state.datsize) - sect.Vaddr } state.checkdatsize(symn) } // allocateNamedSectionAndAssignSyms creates a new section with the // specified name, then walks through the bucketed data symbols with // type 'symn' and assigns each of them to this new section. "Seg" is // the segment into which to place the new section, "secName" is the // name to give to the new section, "forceType" (if non-zero) contains // a new sym type to apply to each sym during the assignment, and // "rwx" holds section permissions. func (state *dodataState) allocateNamedSectionAndAssignSyms(seg *sym.Segment, secName string, symn sym.SymKind, forceType sym.SymKind, rwx int) *sym.Section { sect := state.allocateNamedDataSection(seg, secName, []sym.SymKind{symn}, rwx) state.assignDsymsToSection(sect, state.data[symn], forceType, aligndatsize) return sect } // allocateDataSections allocates sym.Section objects for data/rodata // (and related) symbols, and then assigns symbols to those sections. func (state *dodataState) allocateDataSections(ctxt *Link) { // Allocate sections. // Data is processed before segtext, because we need // to see all symbols in the .data and .bss sections in order // to generate garbage collection information. // Writable data sections that do not need any specialized handling. writable := []sym.SymKind{ sym.SBUILDINFO, sym.SELFSECT, sym.SMACHO, sym.SMACHOGOT, sym.SWINDOWS, } for _, symn := range writable { state.allocateSingleSymSections(&Segdata, symn, sym.SDATA, 06) } ldr := ctxt.loader // .got if len(state.data[sym.SELFGOT]) > 0 { state.allocateNamedSectionAndAssignSyms(&Segdata, ".got", sym.SELFGOT, sym.SDATA, 06) } /* pointer-free data */ sect := state.allocateNamedSectionAndAssignSyms(&Segdata, ".noptrdata", sym.SNOPTRDATA, sym.SDATA, 06) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.noptrdata", 0), sect) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.enoptrdata", 0), sect) hasinitarr := ctxt.linkShared /* shared library initializer */ switch ctxt.BuildMode { case BuildModeCArchive, BuildModeCShared, BuildModeShared, BuildModePlugin: hasinitarr = true } if ctxt.HeadType == objabi.Haix { if len(state.data[sym.SINITARR]) > 0 { Errorf(nil, "XCOFF format doesn't allow .init_array section") } } if hasinitarr && len(state.data[sym.SINITARR]) > 0 { state.allocateNamedSectionAndAssignSyms(&Segdata, ".init_array", sym.SINITARR, sym.Sxxx, 06) } /* data */ sect = state.allocateNamedSectionAndAssignSyms(&Segdata, ".data", sym.SDATA, sym.SDATA, 06) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.data", 0), sect) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.edata", 0), sect) dataGcEnd := state.datsize - int64(sect.Vaddr) // On AIX, TOC entries must be the last of .data // These aren't part of gc as they won't change during the runtime. state.assignToSection(sect, sym.SXCOFFTOC, sym.SDATA) state.checkdatsize(sym.SDATA) sect.Length = uint64(state.datsize) - sect.Vaddr /* bss */ sect = state.allocateNamedSectionAndAssignSyms(&Segdata, ".bss", sym.SBSS, sym.Sxxx, 06) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.bss", 0), sect) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.ebss", 0), sect) bssGcEnd := state.datsize - int64(sect.Vaddr) // Emit gcdata for bss symbols now that symbol values have been assigned. gcsToEmit := []struct { symName string symKind sym.SymKind gcEnd int64 }{ {"runtime.gcdata", sym.SDATA, dataGcEnd}, {"runtime.gcbss", sym.SBSS, bssGcEnd}, } for _, g := range gcsToEmit { var gc GCProg gc.Init(ctxt, g.symName) for _, s := range state.data[g.symKind] { gc.AddSym(s) } gc.End(g.gcEnd) } /* pointer-free bss */ sect = state.allocateNamedSectionAndAssignSyms(&Segdata, ".noptrbss", sym.SNOPTRBSS, sym.Sxxx, 06) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.noptrbss", 0), sect) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.enoptrbss", 0), sect) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.end", 0), sect) // Code coverage counters are assigned to the .noptrbss section. // We assign them in a separate pass so that they stay aggregated // together in a single blob (coverage runtime depends on this). covCounterDataStartOff = sect.Length state.assignToSection(sect, sym.SCOVERAGE_COUNTER, sym.SNOPTRBSS) covCounterDataLen = sect.Length - covCounterDataStartOff ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.covctrs", 0), sect) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.ecovctrs", 0), sect) // Coverage instrumentation counters for libfuzzer. if len(state.data[sym.SLIBFUZZER_8BIT_COUNTER]) > 0 { sect := state.allocateNamedSectionAndAssignSyms(&Segdata, ".go.fuzzcntrs", sym.SLIBFUZZER_8BIT_COUNTER, sym.Sxxx, 06) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.__start___sancov_cntrs", 0), sect) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.__stop___sancov_cntrs", 0), sect) ldr.SetSymSect(ldr.LookupOrCreateSym("internal/fuzz._counters", 0), sect) ldr.SetSymSect(ldr.LookupOrCreateSym("internal/fuzz._ecounters", 0), sect) } if len(state.data[sym.STLSBSS]) > 0 { var sect *sym.Section // FIXME: not clear why it is sometimes necessary to suppress .tbss section creation. if (ctxt.IsELF || ctxt.HeadType == objabi.Haix) && (ctxt.LinkMode == LinkExternal || !*FlagD) { sect = addsection(ldr, ctxt.Arch, &Segdata, ".tbss", 06) sect.Align = int32(ctxt.Arch.PtrSize) // FIXME: why does this need to be set to zero? sect.Vaddr = 0 } state.datsize = 0 for _, s := range state.data[sym.STLSBSS] { state.datsize = aligndatsize(state, state.datsize, s) if sect != nil { ldr.SetSymSect(s, sect) } ldr.SetSymValue(s, state.datsize) state.datsize += ldr.SymSize(s) } state.checkdatsize(sym.STLSBSS) if sect != nil { sect.Length = uint64(state.datsize) } } /* * We finished data, begin read-only data. * Not all systems support a separate read-only non-executable data section. * ELF and Windows PE systems do. * OS X and Plan 9 do not. * And if we're using external linking mode, the point is moot, * since it's not our decision; that code expects the sections in * segtext. */ var segro *sym.Segment if ctxt.IsELF && ctxt.LinkMode == LinkInternal { segro = &Segrodata } else if ctxt.HeadType == objabi.Hwindows { segro = &Segrodata } else { segro = &Segtext } state.datsize = 0 /* read-only executable ELF, Mach-O sections */ if len(state.data[sym.STEXT]) != 0 { culprit := ldr.SymName(state.data[sym.STEXT][0]) Errorf(nil, "dodata found an sym.STEXT symbol: %s", culprit) } state.allocateSingleSymSections(&Segtext, sym.SELFRXSECT, sym.SRODATA, 05) state.allocateSingleSymSections(&Segtext, sym.SMACHOPLT, sym.SRODATA, 05) /* read-only data */ sect = state.allocateNamedDataSection(segro, ".rodata", sym.ReadOnly, 04) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.rodata", 0), sect) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.erodata", 0), sect) if !ctxt.UseRelro() { ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.types", 0), sect) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.etypes", 0), sect) } for _, symn := range sym.ReadOnly { symnStartValue := state.datsize if len(state.data[symn]) != 0 { symnStartValue = aligndatsize(state, symnStartValue, state.data[symn][0]) } state.assignToSection(sect, symn, sym.SRODATA) setCarrierSize(symn, state.datsize-symnStartValue) if ctxt.HeadType == objabi.Haix { // Read-only symbols might be wrapped inside their outer // symbol. // XCOFF symbol table needs to know the size of // these outer symbols. xcoffUpdateOuterSize(ctxt, state.datsize-symnStartValue, symn) } } /* read-only ELF, Mach-O sections */ state.allocateSingleSymSections(segro, sym.SELFROSECT, sym.SRODATA, 04) // There is some data that are conceptually read-only but are written to by // relocations. On GNU systems, we can arrange for the dynamic linker to // mprotect sections after relocations are applied by giving them write // permissions in the object file and calling them ".data.rel.ro.FOO". We // divide the .rodata section between actual .rodata and .data.rel.ro.rodata, // but for the other sections that this applies to, we just write a read-only // .FOO section or a read-write .data.rel.ro.FOO section depending on the // situation. // TODO(mwhudson): It would make sense to do this more widely, but it makes // the system linker segfault on darwin. const relroPerm = 06 const fallbackPerm = 04 relroSecPerm := fallbackPerm genrelrosecname := func(suffix string) string { if suffix == "" { return ".rodata" } return suffix } seg := segro if ctxt.UseRelro() { segrelro := &Segrelrodata if ctxt.LinkMode == LinkExternal && !ctxt.IsAIX() && !ctxt.IsDarwin() { // Using a separate segment with an external // linker results in some programs moving // their data sections unexpectedly, which // corrupts the moduledata. So we use the // rodata segment and let the external linker // sort out a rel.ro segment. segrelro = segro } else { // Reset datsize for new segment. state.datsize = 0 } if !ctxt.IsDarwin() { // We don't need the special names on darwin. genrelrosecname = func(suffix string) string { return ".data.rel.ro" + suffix } } relroReadOnly := []sym.SymKind{} for _, symnro := range sym.ReadOnly { symn := sym.RelROMap[symnro] relroReadOnly = append(relroReadOnly, symn) } seg = segrelro relroSecPerm = relroPerm /* data only written by relocations */ sect = state.allocateNamedDataSection(segrelro, genrelrosecname(""), relroReadOnly, relroSecPerm) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.types", 0), sect) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.etypes", 0), sect) for i, symnro := range sym.ReadOnly { if i == 0 && symnro == sym.STYPE && ctxt.HeadType != objabi.Haix { // Skip forward so that no type // reference uses a zero offset. // This is unlikely but possible in small // programs with no other read-only data. state.datsize++ } symn := sym.RelROMap[symnro] symnStartValue := state.datsize if len(state.data[symn]) != 0 { symnStartValue = aligndatsize(state, symnStartValue, state.data[symn][0]) } for _, s := range state.data[symn] { outer := ldr.OuterSym(s) if s != 0 && ldr.SymSect(outer) != nil && ldr.SymSect(outer) != sect { ctxt.Errorf(s, "s.Outer (%s) in different section from s, %s != %s", ldr.SymName(outer), ldr.SymSect(outer).Name, sect.Name) } } state.assignToSection(sect, symn, sym.SRODATA) setCarrierSize(symn, state.datsize-symnStartValue) if ctxt.HeadType == objabi.Haix { // Read-only symbols might be wrapped inside their outer // symbol. // XCOFF symbol table needs to know the size of // these outer symbols. xcoffUpdateOuterSize(ctxt, state.datsize-symnStartValue, symn) } } sect.Length = uint64(state.datsize) - sect.Vaddr } /* typelink */ sect = state.allocateNamedDataSection(seg, genrelrosecname(".typelink"), []sym.SymKind{sym.STYPELINK}, relroSecPerm) typelink := ldr.CreateSymForUpdate("runtime.typelink", 0) ldr.SetSymSect(typelink.Sym(), sect) typelink.SetType(sym.SRODATA) state.datsize += typelink.Size() state.checkdatsize(sym.STYPELINK) sect.Length = uint64(state.datsize) - sect.Vaddr /* itablink */ sect = state.allocateNamedDataSection(seg, genrelrosecname(".itablink"), []sym.SymKind{sym.SITABLINK}, relroSecPerm) itablink := ldr.CreateSymForUpdate("runtime.itablink", 0) ldr.SetSymSect(itablink.Sym(), sect) itablink.SetType(sym.SRODATA) state.datsize += itablink.Size() state.checkdatsize(sym.SITABLINK) sect.Length = uint64(state.datsize) - sect.Vaddr /* gosymtab */ sect = state.allocateNamedSectionAndAssignSyms(seg, genrelrosecname(".gosymtab"), sym.SSYMTAB, sym.SRODATA, relroSecPerm) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.symtab", 0), sect) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.esymtab", 0), sect) /* gopclntab */ sect = state.allocateNamedSectionAndAssignSyms(seg, genrelrosecname(".gopclntab"), sym.SPCLNTAB, sym.SRODATA, relroSecPerm) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.pclntab", 0), sect) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.pcheader", 0), sect) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.funcnametab", 0), sect) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.cutab", 0), sect) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.filetab", 0), sect) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.pctab", 0), sect) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.functab", 0), sect) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.epclntab", 0), sect) setCarrierSize(sym.SPCLNTAB, int64(sect.Length)) if ctxt.HeadType == objabi.Haix { xcoffUpdateOuterSize(ctxt, int64(sect.Length), sym.SPCLNTAB) } // 6g uses 4-byte relocation offsets, so the entire segment must fit in 32 bits. if state.datsize != int64(uint32(state.datsize)) { Errorf(nil, "read-only data segment too large: %d", state.datsize) } siz := 0 for symn := sym.SELFRXSECT; symn < sym.SXREF; symn++ { siz += len(state.data[symn]) } ctxt.datap = make([]loader.Sym, 0, siz) for symn := sym.SELFRXSECT; symn < sym.SXREF; symn++ { ctxt.datap = append(ctxt.datap, state.data[symn]...) } } // allocateDwarfSections allocates sym.Section objects for DWARF // symbols, and assigns symbols to sections. func (state *dodataState) allocateDwarfSections(ctxt *Link) { alignOne := func(state *dodataState, datsize int64, s loader.Sym) int64 { return datsize } ldr := ctxt.loader for i := 0; i < len(dwarfp); i++ { // First the section symbol. s := dwarfp[i].secSym() sect := state.allocateNamedDataSection(&Segdwarf, ldr.SymName(s), []sym.SymKind{}, 04) ldr.SetSymSect(s, sect) sect.Sym = sym.LoaderSym(s) curType := ldr.SymType(s) state.setSymType(s, sym.SRODATA) ldr.SetSymValue(s, int64(uint64(state.datsize)-sect.Vaddr)) state.datsize += ldr.SymSize(s) // Then any sub-symbols for the section symbol. subSyms := dwarfp[i].subSyms() state.assignDsymsToSection(sect, subSyms, sym.SRODATA, alignOne) for j := 0; j < len(subSyms); j++ { s := subSyms[j] if ctxt.HeadType == objabi.Haix && curType == sym.SDWARFLOC { // Update the size of .debug_loc for this symbol's // package. addDwsectCUSize(".debug_loc", ldr.SymPkg(s), uint64(ldr.SymSize(s))) } } sect.Length = uint64(state.datsize) - sect.Vaddr checkSectSize(sect) } } // allocateSEHSections allocate a sym.Section object for SEH // symbols, and assigns symbols to sections. func (state *dodataState) allocateSEHSections(ctxt *Link) { if len(sehp.pdata) > 0 { sect := state.allocateNamedDataSection(&Segpdata, ".pdata", []sym.SymKind{}, 04) state.assignDsymsToSection(sect, sehp.pdata, sym.SRODATA, aligndatsize) state.checkdatsize(sym.SSEHSECT) } if len(sehp.xdata) > 0 { sect := state.allocateNamedDataSection(&Segxdata, ".xdata", []sym.SymKind{}, 04) state.assignDsymsToSection(sect, sehp.xdata, sym.SRODATA, aligndatsize) state.checkdatsize(sym.SSEHSECT) } } type symNameSize struct { name string sz int64 val int64 sym loader.Sym } func (state *dodataState) dodataSect(ctxt *Link, symn sym.SymKind, syms []loader.Sym) (result []loader.Sym, maxAlign int32) { var head, tail, zerobase loader.Sym ldr := ctxt.loader sl := make([]symNameSize, len(syms)) // For ppc64, we want to interleave the .got and .toc sections // from input files. Both are type sym.SELFGOT, so in that case // we skip size comparison and do the name comparison instead // (conveniently, .got sorts before .toc). checkSize := symn != sym.SELFGOT for k, s := range syms { ss := ldr.SymSize(s) sl[k] = symNameSize{sz: ss, sym: s} if !checkSize { sl[k].name = ldr.SymName(s) } ds := int64(len(ldr.Data(s))) switch { case ss < ds: ctxt.Errorf(s, "initialize bounds (%d < %d)", ss, ds) case ss < 0: ctxt.Errorf(s, "negative size (%d bytes)", ss) case ss > cutoff: ctxt.Errorf(s, "symbol too large (%d bytes)", ss) } // If the usually-special section-marker symbols are being laid // out as regular symbols, put them either at the beginning or // end of their section. if (ctxt.DynlinkingGo() && ctxt.HeadType == objabi.Hdarwin) || (ctxt.HeadType == objabi.Haix && ctxt.LinkMode == LinkExternal) { switch ldr.SymName(s) { case "runtime.text", "runtime.bss", "runtime.data", "runtime.types", "runtime.rodata", "runtime.noptrdata", "runtime.noptrbss": head = s continue case "runtime.etext", "runtime.ebss", "runtime.edata", "runtime.etypes", "runtime.erodata", "runtime.enoptrdata", "runtime.enoptrbss": tail = s continue } } } zerobase = ldr.Lookup("runtime.zerobase", 0) // Perform the sort. if symn != sym.SPCLNTAB { sort.Slice(sl, func(i, j int) bool { si, sj := sl[i].sym, sl[j].sym isz, jsz := sl[i].sz, sl[j].sz switch { case si == head, sj == tail: return true case sj == head, si == tail: return false // put zerobase right after all the zero-sized symbols, // so zero-sized symbols have the same address as zerobase. case si == zerobase: return jsz != 0 // zerobase < nonzero-sized case sj == zerobase: return isz == 0 // 0-sized < zerobase } if checkSize { if isz != jsz { return isz < jsz } } else { iname := sl[i].name jname := sl[j].name if iname != jname { return iname < jname } } return si < sj }) } else { // PCLNTAB was built internally, and already has the proper order. } // Set alignment, construct result syms = syms[:0] for k := range sl { s := sl[k].sym if s != head && s != tail { align := symalign(ldr, s) if maxAlign < align { maxAlign = align } } syms = append(syms, s) } return syms, maxAlign } // Add buildid to beginning of text segment, on non-ELF systems. // Non-ELF binary formats are not always flexible enough to // give us a place to put the Go build ID. On those systems, we put it // at the very beginning of the text segment. // This “header” is read by cmd/go. func (ctxt *Link) textbuildid() { if ctxt.IsELF || *flagBuildid == "" { return } ldr := ctxt.loader s := ldr.CreateSymForUpdate("go:buildid", 0) // The \xff is invalid UTF-8, meant to make it less likely // to find one of these accidentally. data := "\xff Go build ID: " + strconv.Quote(*flagBuildid) + "\n \xff" s.SetType(sym.STEXT) s.SetData([]byte(data)) s.SetSize(int64(len(data))) ctxt.Textp = append(ctxt.Textp, 0) copy(ctxt.Textp[1:], ctxt.Textp) ctxt.Textp[0] = s.Sym() } func (ctxt *Link) buildinfo() { // Write the buildinfo symbol, which go version looks for. // The code reading this data is in package debug/buildinfo. ldr := ctxt.loader s := ldr.CreateSymForUpdate("go:buildinfo", 0) s.SetType(sym.SBUILDINFO) s.SetAlign(16) // The \xff is invalid UTF-8, meant to make it less likely // to find one of these accidentally. const prefix = "\xff Go buildinf:" // 14 bytes, plus 2 data bytes filled in below data := make([]byte, 32) copy(data, prefix) data[len(prefix)] = byte(ctxt.Arch.PtrSize) data[len(prefix)+1] = 0 if ctxt.Arch.ByteOrder == binary.BigEndian { data[len(prefix)+1] = 1 } data[len(prefix)+1] |= 2 // signals new pointer-free format data = appendString(data, strdata["runtime.buildVersion"]) data = appendString(data, strdata["runtime.modinfo"]) // MacOS linker gets very upset if the size os not a multiple of alignment. for len(data)%16 != 0 { data = append(data, 0) } s.SetData(data) s.SetSize(int64(len(data))) // Add reference to go:buildinfo from the rodata section, // so that external linking with -Wl,--gc-sections does not // delete the build info. sr := ldr.CreateSymForUpdate("go:buildinfo.ref", 0) sr.SetType(sym.SRODATA) sr.SetAlign(int32(ctxt.Arch.PtrSize)) sr.AddAddr(ctxt.Arch, s.Sym()) } // appendString appends s to data, prefixed by its varint-encoded length. func appendString(data []byte, s string) []byte { var v [binary.MaxVarintLen64]byte n := binary.PutUvarint(v[:], uint64(len(s))) data = append(data, v[:n]...) data = append(data, s...) return data } // assign addresses to text func (ctxt *Link) textaddress() { addsection(ctxt.loader, ctxt.Arch, &Segtext, ".text", 05) // Assign PCs in text segment. // Could parallelize, by assigning to text // and then letting threads copy down, but probably not worth it. sect := Segtext.Sections[0] sect.Align = int32(Funcalign) ldr := ctxt.loader text := ctxt.xdefine("runtime.text", sym.STEXT, 0) etext := ctxt.xdefine("runtime.etext", sym.STEXT, 0) ldr.SetSymSect(text, sect) if ctxt.IsAIX() && ctxt.IsExternal() { // Setting runtime.text has a real symbol prevents ld to // change its base address resulting in wrong offsets for // reflect methods. u := ldr.MakeSymbolUpdater(text) u.SetAlign(sect.Align) u.SetSize(8) } if (ctxt.DynlinkingGo() && ctxt.IsDarwin()) || (ctxt.IsAIX() && ctxt.IsExternal()) { ldr.SetSymSect(etext, sect) ctxt.Textp = append(ctxt.Textp, etext, 0) copy(ctxt.Textp[1:], ctxt.Textp) ctxt.Textp[0] = text } start := uint64(Rnd(*FlagTextAddr, int64(Funcalign))) va := start n := 1 sect.Vaddr = va limit := thearch.TrampLimit if limit == 0 { limit = 1 << 63 // unlimited } if *FlagDebugTextSize != 0 { limit = uint64(*FlagDebugTextSize) } if *FlagDebugTramp > 1 { limit = 1 // debug mode, force generating trampolines for everything } if ctxt.IsAIX() && ctxt.IsExternal() { // On AIX, normally we won't generate direct calls to external symbols, // except in one test, cmd/go/testdata/script/link_syso_issue33139.txt. // That test doesn't make much sense, and I'm not sure it ever works. // Just generate trampoline for now (which will turn a direct call to // an indirect call, which at least builds). limit = 1 } // First pass: assign addresses assuming the program is small and will // not require trampoline generation. big := false for _, s := range ctxt.Textp { sect, n, va = assignAddress(ctxt, sect, n, s, va, false, big) if va-start >= limit { big = true break } } // Second pass: only if it is too big, insert trampolines for too-far // jumps and targets with unknown addresses. if big { // reset addresses for _, s := range ctxt.Textp { if s != text { resetAddress(ctxt, s) } } va = start ntramps := 0 var curPkg string for i, s := range ctxt.Textp { // When we find the first symbol in a package, perform a // single iteration that assigns temporary addresses to all // of the text in the same package, using the maximum possible // number of trampolines. This allows for better decisions to // be made regarding reachability and the need for trampolines. if symPkg := ldr.SymPkg(s); symPkg != "" && curPkg != symPkg { curPkg = symPkg vaTmp := va for j := i; j < len(ctxt.Textp); j++ { curSym := ctxt.Textp[j] if symPkg := ldr.SymPkg(curSym); symPkg == "" || curPkg != symPkg { break } // We do not pass big to assignAddress here, as this // can result in side effects such as section splitting. sect, n, vaTmp = assignAddress(ctxt, sect, n, curSym, vaTmp, false, false) vaTmp += maxSizeTrampolines(ctxt, ldr, curSym, false) } } // Reset address for current symbol. if s != text { resetAddress(ctxt, s) } // Assign actual address for current symbol. sect, n, va = assignAddress(ctxt, sect, n, s, va, false, big) // Resolve jumps, adding trampolines if they are needed. trampoline(ctxt, s) // lay down trampolines after each function for ; ntramps < len(ctxt.tramps); ntramps++ { tramp := ctxt.tramps[ntramps] if ctxt.IsAIX() && strings.HasPrefix(ldr.SymName(tramp), "runtime.text.") { // Already set in assignAddress continue } sect, n, va = assignAddress(ctxt, sect, n, tramp, va, true, big) } } // merge tramps into Textp, keeping Textp in address order if ntramps != 0 { newtextp := make([]loader.Sym, 0, len(ctxt.Textp)+ntramps) i := 0 for _, s := range ctxt.Textp { for ; i < ntramps && ldr.SymValue(ctxt.tramps[i]) < ldr.SymValue(s); i++ { newtextp = append(newtextp, ctxt.tramps[i]) } newtextp = append(newtextp, s) } newtextp = append(newtextp, ctxt.tramps[i:ntramps]...) ctxt.Textp = newtextp } } // Add MinLC size after etext, so it won't collide with the next symbol // (which may confuse some symbolizer). sect.Length = va - sect.Vaddr + uint64(ctxt.Arch.MinLC) ldr.SetSymSect(etext, sect) if ldr.SymValue(etext) == 0 { // Set the address of the start/end symbols, if not already // (i.e. not darwin+dynlink or AIX+external, see above). ldr.SetSymValue(etext, int64(va)) ldr.SetSymValue(text, int64(Segtext.Sections[0].Vaddr)) } } // assigns address for a text symbol, returns (possibly new) section, its number, and the address. func assignAddress(ctxt *Link, sect *sym.Section, n int, s loader.Sym, va uint64, isTramp, big bool) (*sym.Section, int, uint64) { ldr := ctxt.loader if thearch.AssignAddress != nil { return thearch.AssignAddress(ldr, sect, n, s, va, isTramp) } ldr.SetSymSect(s, sect) if ldr.AttrSubSymbol(s) { return sect, n, va } align := ldr.SymAlign(s) if align == 0 { align = int32(Funcalign) } va = uint64(Rnd(int64(va), int64(align))) if sect.Align < align { sect.Align = align } funcsize := uint64(MINFUNC) // spacing required for findfunctab if ldr.SymSize(s) > MINFUNC { funcsize = uint64(ldr.SymSize(s)) } // If we need to split text sections, and this function doesn't fit in the current // section, then create a new one. // // Only break at outermost syms. if big && splitTextSections(ctxt) && ldr.OuterSym(s) == 0 { // For debugging purposes, allow text size limit to be cranked down, // so as to stress test the code that handles multiple text sections. var textSizelimit uint64 = thearch.TrampLimit if *FlagDebugTextSize != 0 { textSizelimit = uint64(*FlagDebugTextSize) } // Sanity check: make sure the limit is larger than any // individual text symbol. if funcsize > textSizelimit { panic(fmt.Sprintf("error: text size limit %d less than text symbol %s size of %d", textSizelimit, ldr.SymName(s), funcsize)) } if va-sect.Vaddr+funcsize+maxSizeTrampolines(ctxt, ldr, s, isTramp) > textSizelimit { sectAlign := int32(thearch.Funcalign) if ctxt.IsPPC64() { // Align the next text section to the worst case function alignment likely // to be encountered when processing function symbols. The start address // is rounded against the final alignment of the text section later on in // (*Link).address. This may happen due to usage of PCALIGN directives // larger than Funcalign, or usage of ISA 3.1 prefixed instructions // (see ISA 3.1 Book I 1.9). const ppc64maxFuncalign = 64 sectAlign = ppc64maxFuncalign va = uint64(Rnd(int64(va), ppc64maxFuncalign)) } // Set the length for the previous text section sect.Length = va - sect.Vaddr // Create new section, set the starting Vaddr sect = addsection(ctxt.loader, ctxt.Arch, &Segtext, ".text", 05) sect.Vaddr = va sect.Align = sectAlign ldr.SetSymSect(s, sect) // Create a symbol for the start of the secondary text sections ntext := ldr.CreateSymForUpdate(fmt.Sprintf("runtime.text.%d", n), 0) ntext.SetSect(sect) if ctxt.IsAIX() { // runtime.text.X must be a real symbol on AIX. // Assign its address directly in order to be the // first symbol of this new section. ntext.SetType(sym.STEXT) ntext.SetSize(int64(MINFUNC)) ntext.SetOnList(true) ntext.SetAlign(sectAlign) ctxt.tramps = append(ctxt.tramps, ntext.Sym()) ntext.SetValue(int64(va)) va += uint64(ntext.Size()) if align := ldr.SymAlign(s); align != 0 { va = uint64(Rnd(int64(va), int64(align))) } else { va = uint64(Rnd(int64(va), int64(Funcalign))) } } n++ } } ldr.SetSymValue(s, 0) for sub := s; sub != 0; sub = ldr.SubSym(sub) { ldr.SetSymValue(sub, ldr.SymValue(sub)+int64(va)) if ctxt.Debugvlog > 2 { fmt.Println("assign text address:", ldr.SymName(sub), ldr.SymValue(sub)) } } va += funcsize return sect, n, va } func resetAddress(ctxt *Link, s loader.Sym) { ldr := ctxt.loader if ldr.OuterSym(s) != 0 { return } oldv := ldr.SymValue(s) for sub := s; sub != 0; sub = ldr.SubSym(sub) { ldr.SetSymValue(sub, ldr.SymValue(sub)-oldv) } } // Return whether we may need to split text sections. // // On PPC64x, when external linking, a text section should not be // larger than 2^25 bytes due to the size of call target offset field // in the 'bl' instruction. Splitting into smaller text sections // smaller than this limit allows the system linker to modify the long // calls appropriately. The limit allows for the space needed for // tables inserted by the linker. // // The same applies to Darwin/ARM64, with 2^27 byte threshold. // // Similarly for ARM, we split sections (at 2^25 bytes) to avoid // inconsistencies between the Go linker's reachability calculations // (e.g. will direct call from X to Y need a trampoline) and similar // machinery in the external linker; see #58425 for more on the // history here. func splitTextSections(ctxt *Link) bool { return (ctxt.IsARM() || ctxt.IsPPC64() || (ctxt.IsARM64() && ctxt.IsDarwin())) && ctxt.IsExternal() } // On Wasm, we reserve 4096 bytes for zero page, then 8192 bytes for wasm_exec.js // to store command line args and environment variables. // Data sections starts from at least address 12288. // Keep in sync with wasm_exec.js. const wasmMinDataAddr = 4096 + 8192 // address assigns virtual addresses to all segments and sections and // returns all segments in file order. func (ctxt *Link) address() []*sym.Segment { var order []*sym.Segment // Layout order va := uint64(*FlagTextAddr) order = append(order, &Segtext) Segtext.Rwx = 05 Segtext.Vaddr = va for i, s := range Segtext.Sections { va = uint64(Rnd(int64(va), int64(s.Align))) s.Vaddr = va va += s.Length if ctxt.IsWasm() && i == 0 && va < wasmMinDataAddr { va = wasmMinDataAddr } } Segtext.Length = va - uint64(*FlagTextAddr) if len(Segrodata.Sections) > 0 { // align to page boundary so as not to mix // rodata and executable text. // // Note: gold or GNU ld will reduce the size of the executable // file by arranging for the relro segment to end at a page // boundary, and overlap the end of the text segment with the // start of the relro segment in the file. The PT_LOAD segments // will be such that the last page of the text segment will be // mapped twice, once r-x and once starting out rw- and, after // relocation processing, changed to r--. // // Ideally the last page of the text segment would not be // writable even for this short period. va = uint64(Rnd(int64(va), *FlagRound)) order = append(order, &Segrodata) Segrodata.Rwx = 04 Segrodata.Vaddr = va for _, s := range Segrodata.Sections { va = uint64(Rnd(int64(va), int64(s.Align))) s.Vaddr = va va += s.Length } Segrodata.Length = va - Segrodata.Vaddr } if len(Segrelrodata.Sections) > 0 { // align to page boundary so as not to mix // rodata, rel-ro data, and executable text. va = uint64(Rnd(int64(va), *FlagRound)) if ctxt.HeadType == objabi.Haix { // Relro data are inside data segment on AIX. va += uint64(XCOFFDATABASE) - uint64(XCOFFTEXTBASE) } order = append(order, &Segrelrodata) Segrelrodata.Rwx = 06 Segrelrodata.Vaddr = va for _, s := range Segrelrodata.Sections { va = uint64(Rnd(int64(va), int64(s.Align))) s.Vaddr = va va += s.Length } Segrelrodata.Length = va - Segrelrodata.Vaddr } va = uint64(Rnd(int64(va), *FlagRound)) if ctxt.HeadType == objabi.Haix && len(Segrelrodata.Sections) == 0 { // Data sections are moved to an unreachable segment // to ensure that they are position-independent. // Already done if relro sections exist. va += uint64(XCOFFDATABASE) - uint64(XCOFFTEXTBASE) } order = append(order, &Segdata) Segdata.Rwx = 06 Segdata.Vaddr = va var data *sym.Section var noptr *sym.Section var bss *sym.Section var noptrbss *sym.Section var fuzzCounters *sym.Section for i, s := range Segdata.Sections { if (ctxt.IsELF || ctxt.HeadType == objabi.Haix) && s.Name == ".tbss" { continue } vlen := int64(s.Length) if i+1 < len(Segdata.Sections) && !((ctxt.IsELF || ctxt.HeadType == objabi.Haix) && Segdata.Sections[i+1].Name == ".tbss") { vlen = int64(Segdata.Sections[i+1].Vaddr - s.Vaddr) } s.Vaddr = va va += uint64(vlen) Segdata.Length = va - Segdata.Vaddr switch s.Name { case ".data": data = s case ".noptrdata": noptr = s case ".bss": bss = s case ".noptrbss": noptrbss = s case ".go.fuzzcntrs": fuzzCounters = s } } // Assign Segdata's Filelen omitting the BSS. We do this here // simply because right now we know where the BSS starts. Segdata.Filelen = bss.Vaddr - Segdata.Vaddr if len(Segpdata.Sections) > 0 { va = uint64(Rnd(int64(va), *FlagRound)) order = append(order, &Segpdata) Segpdata.Rwx = 04 Segpdata.Vaddr = va // Segpdata.Sections is intended to contain just one section. // Loop through the slice anyway for consistency. for _, s := range Segpdata.Sections { va = uint64(Rnd(int64(va), int64(s.Align))) s.Vaddr = va va += s.Length } Segpdata.Length = va - Segpdata.Vaddr } if len(Segxdata.Sections) > 0 { va = uint64(Rnd(int64(va), *FlagRound)) order = append(order, &Segxdata) Segxdata.Rwx = 04 Segxdata.Vaddr = va // Segxdata.Sections is intended to contain just one section. // Loop through the slice anyway for consistency. for _, s := range Segxdata.Sections { va = uint64(Rnd(int64(va), int64(s.Align))) s.Vaddr = va va += s.Length } Segxdata.Length = va - Segxdata.Vaddr } va = uint64(Rnd(int64(va), *FlagRound)) order = append(order, &Segdwarf) Segdwarf.Rwx = 06 Segdwarf.Vaddr = va for i, s := range Segdwarf.Sections { vlen := int64(s.Length) if i+1 < len(Segdwarf.Sections) { vlen = int64(Segdwarf.Sections[i+1].Vaddr - s.Vaddr) } s.Vaddr = va va += uint64(vlen) if ctxt.HeadType == objabi.Hwindows { va = uint64(Rnd(int64(va), PEFILEALIGN)) } Segdwarf.Length = va - Segdwarf.Vaddr } ldr := ctxt.loader var ( rodata = ldr.SymSect(ldr.LookupOrCreateSym("runtime.rodata", 0)) symtab = ldr.SymSect(ldr.LookupOrCreateSym("runtime.symtab", 0)) pclntab = ldr.SymSect(ldr.LookupOrCreateSym("runtime.pclntab", 0)) types = ldr.SymSect(ldr.LookupOrCreateSym("runtime.types", 0)) ) for _, s := range ctxt.datap { if sect := ldr.SymSect(s); sect != nil { ldr.AddToSymValue(s, int64(sect.Vaddr)) } v := ldr.SymValue(s) for sub := ldr.SubSym(s); sub != 0; sub = ldr.SubSym(sub) { ldr.AddToSymValue(sub, v) } } for _, si := range dwarfp { for _, s := range si.syms { if sect := ldr.SymSect(s); sect != nil { ldr.AddToSymValue(s, int64(sect.Vaddr)) } sub := ldr.SubSym(s) if sub != 0 { panic(fmt.Sprintf("unexpected sub-sym for %s %s", ldr.SymName(s), ldr.SymType(s).String())) } v := ldr.SymValue(s) for ; sub != 0; sub = ldr.SubSym(sub) { ldr.AddToSymValue(s, v) } } } for _, s := range sehp.pdata { if sect := ldr.SymSect(s); sect != nil { ldr.AddToSymValue(s, int64(sect.Vaddr)) } } for _, s := range sehp.xdata { if sect := ldr.SymSect(s); sect != nil { ldr.AddToSymValue(s, int64(sect.Vaddr)) } } if ctxt.BuildMode == BuildModeShared { s := ldr.LookupOrCreateSym("go:link.abihashbytes", 0) sect := ldr.SymSect(ldr.LookupOrCreateSym(".note.go.abihash", 0)) ldr.SetSymSect(s, sect) ldr.SetSymValue(s, int64(sect.Vaddr+16)) } // If there are multiple text sections, create runtime.text.n for // their section Vaddr, using n for index n := 1 for _, sect := range Segtext.Sections[1:] { if sect.Name != ".text" { break } symname := fmt.Sprintf("runtime.text.%d", n) if ctxt.HeadType != objabi.Haix || ctxt.LinkMode != LinkExternal { // Addresses are already set on AIX with external linker // because these symbols are part of their sections. ctxt.xdefine(symname, sym.STEXT, int64(sect.Vaddr)) } n++ } ctxt.xdefine("runtime.rodata", sym.SRODATA, int64(rodata.Vaddr)) ctxt.xdefine("runtime.erodata", sym.SRODATA, int64(rodata.Vaddr+rodata.Length)) ctxt.xdefine("runtime.types", sym.SRODATA, int64(types.Vaddr)) ctxt.xdefine("runtime.etypes", sym.SRODATA, int64(types.Vaddr+types.Length)) s := ldr.Lookup("runtime.gcdata", 0) ldr.SetAttrLocal(s, true) ctxt.xdefine("runtime.egcdata", sym.SRODATA, ldr.SymAddr(s)+ldr.SymSize(s)) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.egcdata", 0), ldr.SymSect(s)) s = ldr.LookupOrCreateSym("runtime.gcbss", 0) ldr.SetAttrLocal(s, true) ctxt.xdefine("runtime.egcbss", sym.SRODATA, ldr.SymAddr(s)+ldr.SymSize(s)) ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.egcbss", 0), ldr.SymSect(s)) ctxt.xdefine("runtime.symtab", sym.SRODATA, int64(symtab.Vaddr)) ctxt.xdefine("runtime.esymtab", sym.SRODATA, int64(symtab.Vaddr+symtab.Length)) ctxt.xdefine("runtime.pclntab", sym.SRODATA, int64(pclntab.Vaddr)) ctxt.defineInternal("runtime.pcheader", sym.SRODATA) ctxt.defineInternal("runtime.funcnametab", sym.SRODATA) ctxt.defineInternal("runtime.cutab", sym.SRODATA) ctxt.defineInternal("runtime.filetab", sym.SRODATA) ctxt.defineInternal("runtime.pctab", sym.SRODATA) ctxt.defineInternal("runtime.functab", sym.SRODATA) ctxt.xdefine("runtime.epclntab", sym.SRODATA, int64(pclntab.Vaddr+pclntab.Length)) ctxt.xdefine("runtime.noptrdata", sym.SNOPTRDATA, int64(noptr.Vaddr)) ctxt.xdefine("runtime.enoptrdata", sym.SNOPTRDATA, int64(noptr.Vaddr+noptr.Length)) ctxt.xdefine("runtime.bss", sym.SBSS, int64(bss.Vaddr)) ctxt.xdefine("runtime.ebss", sym.SBSS, int64(bss.Vaddr+bss.Length)) ctxt.xdefine("runtime.data", sym.SDATA, int64(data.Vaddr)) ctxt.xdefine("runtime.edata", sym.SDATA, int64(data.Vaddr+data.Length)) ctxt.xdefine("runtime.noptrbss", sym.SNOPTRBSS, int64(noptrbss.Vaddr)) ctxt.xdefine("runtime.enoptrbss", sym.SNOPTRBSS, int64(noptrbss.Vaddr+noptrbss.Length)) ctxt.xdefine("runtime.covctrs", sym.SCOVERAGE_COUNTER, int64(noptrbss.Vaddr+covCounterDataStartOff)) ctxt.xdefine("runtime.ecovctrs", sym.SCOVERAGE_COUNTER, int64(noptrbss.Vaddr+covCounterDataStartOff+covCounterDataLen)) ctxt.xdefine("runtime.end", sym.SBSS, int64(Segdata.Vaddr+Segdata.Length)) if fuzzCounters != nil { ctxt.xdefine("runtime.__start___sancov_cntrs", sym.SLIBFUZZER_8BIT_COUNTER, int64(fuzzCounters.Vaddr)) ctxt.xdefine("runtime.__stop___sancov_cntrs", sym.SLIBFUZZER_8BIT_COUNTER, int64(fuzzCounters.Vaddr+fuzzCounters.Length)) ctxt.xdefine("internal/fuzz._counters", sym.SLIBFUZZER_8BIT_COUNTER, int64(fuzzCounters.Vaddr)) ctxt.xdefine("internal/fuzz._ecounters", sym.SLIBFUZZER_8BIT_COUNTER, int64(fuzzCounters.Vaddr+fuzzCounters.Length)) } if ctxt.IsSolaris() { // On Solaris, in the runtime it sets the external names of the // end symbols. Unset them and define separate symbols, so we // keep both. etext := ldr.Lookup("runtime.etext", 0) edata := ldr.Lookup("runtime.edata", 0) end := ldr.Lookup("runtime.end", 0) ldr.SetSymExtname(etext, "runtime.etext") ldr.SetSymExtname(edata, "runtime.edata") ldr.SetSymExtname(end, "runtime.end") ctxt.xdefine("_etext", ldr.SymType(etext), ldr.SymValue(etext)) ctxt.xdefine("_edata", ldr.SymType(edata), ldr.SymValue(edata)) ctxt.xdefine("_end", ldr.SymType(end), ldr.SymValue(end)) ldr.SetSymSect(ldr.Lookup("_etext", 0), ldr.SymSect(etext)) ldr.SetSymSect(ldr.Lookup("_edata", 0), ldr.SymSect(edata)) ldr.SetSymSect(ldr.Lookup("_end", 0), ldr.SymSect(end)) } if ctxt.IsPPC64() && ctxt.IsElf() { // Resolve .TOC. symbols for all objects. Only one TOC region is supported. If a // GOT section is present, compute it as suggested by the ELFv2 ABI. Otherwise, // choose a similar offset from the start of the data segment. tocAddr := int64(Segdata.Vaddr) + 0x8000 if gotAddr := ldr.SymValue(ctxt.GOT); gotAddr != 0 { tocAddr = gotAddr + 0x8000 } for i := range ctxt.DotTOC { if i >= sym.SymVerABICount && i < sym.SymVerStatic { // these versions are not used currently continue } if toc := ldr.Lookup(".TOC.", i); toc != 0 { ldr.SetSymValue(toc, tocAddr) } } } return order } // layout assigns file offsets and lengths to the segments in order. // Returns the file size containing all the segments. func (ctxt *Link) layout(order []*sym.Segment) uint64 { var prev *sym.Segment for _, seg := range order { if prev == nil { seg.Fileoff = uint64(HEADR) } else { switch ctxt.HeadType { default: // Assuming the previous segment was // aligned, the following rounding // should ensure that this segment's // VA ≡ Fileoff mod FlagRound. seg.Fileoff = uint64(Rnd(int64(prev.Fileoff+prev.Filelen), *FlagRound)) if seg.Vaddr%uint64(*FlagRound) != seg.Fileoff%uint64(*FlagRound) { Exitf("bad segment rounding (Vaddr=%#x Fileoff=%#x FlagRound=%#x)", seg.Vaddr, seg.Fileoff, *FlagRound) } case objabi.Hwindows: seg.Fileoff = prev.Fileoff + uint64(Rnd(int64(prev.Filelen), PEFILEALIGN)) case objabi.Hplan9: seg.Fileoff = prev.Fileoff + prev.Filelen } } if seg != &Segdata { // Link.address already set Segdata.Filelen to // account for BSS. seg.Filelen = seg.Length } prev = seg } return prev.Fileoff + prev.Filelen } // add a trampoline with symbol s (to be laid down after the current function) func (ctxt *Link) AddTramp(s *loader.SymbolBuilder) { s.SetType(sym.STEXT) s.SetReachable(true) s.SetOnList(true) ctxt.tramps = append(ctxt.tramps, s.Sym()) if *FlagDebugTramp > 0 && ctxt.Debugvlog > 0 { ctxt.Logf("trampoline %s inserted\n", s.Name()) } } // compressSyms compresses syms and returns the contents of the // compressed section. If the section would get larger, it returns nil. func compressSyms(ctxt *Link, syms []loader.Sym) []byte { ldr := ctxt.loader var total int64 for _, sym := range syms { total += ldr.SymSize(sym) } var buf bytes.Buffer if ctxt.IsELF { switch ctxt.Arch.PtrSize { case 8: binary.Write(&buf, ctxt.Arch.ByteOrder, elf.Chdr64{ Type: uint32(elf.COMPRESS_ZLIB), Size: uint64(total), Addralign: uint64(ctxt.Arch.Alignment), }) case 4: binary.Write(&buf, ctxt.Arch.ByteOrder, elf.Chdr32{ Type: uint32(elf.COMPRESS_ZLIB), Size: uint32(total), Addralign: uint32(ctxt.Arch.Alignment), }) default: log.Fatalf("can't compress header size:%d", ctxt.Arch.PtrSize) } } else { buf.Write([]byte("ZLIB")) var sizeBytes [8]byte binary.BigEndian.PutUint64(sizeBytes[:], uint64(total)) buf.Write(sizeBytes[:]) } var relocbuf []byte // temporary buffer for applying relocations // Using zlib.BestSpeed achieves very nearly the same // compression levels of zlib.DefaultCompression, but takes // substantially less time. This is important because DWARF // compression can be a significant fraction of link time. z, err := zlib.NewWriterLevel(&buf, zlib.BestSpeed) if err != nil { log.Fatalf("NewWriterLevel failed: %s", err) } st := ctxt.makeRelocSymState() for _, s := range syms { // Symbol data may be read-only. Apply relocations in a // temporary buffer, and immediately write it out. P := ldr.Data(s) relocs := ldr.Relocs(s) if relocs.Count() != 0 { relocbuf = append(relocbuf[:0], P...) P = relocbuf st.relocsym(s, P) } if _, err := z.Write(P); err != nil { log.Fatalf("compression failed: %s", err) } for i := ldr.SymSize(s) - int64(len(P)); i > 0; { b := zeros[:] if i < int64(len(b)) { b = b[:i] } n, err := z.Write(b) if err != nil { log.Fatalf("compression failed: %s", err) } i -= int64(n) } } if err := z.Close(); err != nil { log.Fatalf("compression failed: %s", err) } if int64(buf.Len()) >= total { // Compression didn't save any space. return nil } return buf.Bytes() }