// Inferno utils/5l/asm.c // https://bitbucket.org/inferno-os/inferno-os/src/master/utils/5l/asm.c // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package arm64 import ( "cmd/internal/objabi" "cmd/internal/sys" "cmd/link/internal/ld" "cmd/link/internal/loader" "cmd/link/internal/sym" "debug/elf" "fmt" "log" ) func gentext(ctxt *ld.Link, ldr *loader.Loader) { initfunc, addmoduledata := ld.PrepareAddmoduledata(ctxt) if initfunc == nil { return } o := func(op uint32) { initfunc.AddUint32(ctxt.Arch, op) } // 0000000000000000 : // 0: 90000000 adrp x0, 0 // 0: R_AARCH64_ADR_PREL_PG_HI21 local.moduledata // 4: 91000000 add x0, x0, #0x0 // 4: R_AARCH64_ADD_ABS_LO12_NC local.moduledata o(0x90000000) o(0x91000000) rel, _ := initfunc.AddRel(objabi.R_ADDRARM64) rel.SetOff(0) rel.SetSiz(8) rel.SetSym(ctxt.Moduledata) // 8: 14000000 b 0 // 8: R_AARCH64_CALL26 runtime.addmoduledata o(0x14000000) rel2, _ := initfunc.AddRel(objabi.R_CALLARM64) rel2.SetOff(8) rel2.SetSiz(4) rel2.SetSym(addmoduledata) } func adddynrel(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym, r loader.Reloc, rIdx int) bool { targ := r.Sym() var targType sym.SymKind if targ != 0 { targType = ldr.SymType(targ) } const pcrel = 1 switch r.Type() { default: if r.Type() >= objabi.ElfRelocOffset { ldr.Errorf(s, "unexpected relocation type %d (%s)", r.Type(), sym.RelocName(target.Arch, r.Type())) return false } // Handle relocations found in ELF object files. case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_PREL32): if targType == sym.SDYNIMPORT { ldr.Errorf(s, "unexpected R_AARCH64_PREL32 relocation for dynamic symbol %s", ldr.SymName(targ)) } if targType == 0 || targType == sym.SXREF { ldr.Errorf(s, "unknown symbol %s in pcrel", ldr.SymName(targ)) } su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_PCREL) su.SetRelocAdd(rIdx, r.Add()+4) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_PREL64): if targType == sym.SDYNIMPORT { ldr.Errorf(s, "unexpected R_AARCH64_PREL64 relocation for dynamic symbol %s", ldr.SymName(targ)) } if targType == 0 || targType == sym.SXREF { ldr.Errorf(s, "unknown symbol %s in pcrel", ldr.SymName(targ)) } su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_PCREL) su.SetRelocAdd(rIdx, r.Add()+8) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_CALL26), objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_JUMP26): if targType == sym.SDYNIMPORT { addpltsym(target, ldr, syms, targ) su := ldr.MakeSymbolUpdater(s) su.SetRelocSym(rIdx, syms.PLT) su.SetRelocAdd(rIdx, r.Add()+int64(ldr.SymPlt(targ))) } if targType == 0 || targType == sym.SXREF { ldr.Errorf(s, "unknown symbol %s in callarm64", ldr.SymName(targ)) } su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_CALLARM64) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_ADR_GOT_PAGE), objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_LD64_GOT_LO12_NC): if targType != sym.SDYNIMPORT { // have symbol // TODO: turn LDR of GOT entry into ADR of symbol itself } // fall back to using GOT // TODO: just needs relocation, no need to put in .dynsym ld.AddGotSym(target, ldr, syms, targ, uint32(elf.R_AARCH64_GLOB_DAT)) su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_ARM64_GOT) su.SetRelocSym(rIdx, syms.GOT) su.SetRelocAdd(rIdx, r.Add()+int64(ldr.SymGot(targ))) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_ADR_PREL_PG_HI21), objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_ADD_ABS_LO12_NC): if targType == sym.SDYNIMPORT { ldr.Errorf(s, "unexpected relocation for dynamic symbol %s", ldr.SymName(targ)) } if targType == 0 || targType == sym.SXREF { ldr.Errorf(s, "unknown symbol %s", ldr.SymName(targ)) } su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_ARM64_PCREL) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_ABS64): if targType == sym.SDYNIMPORT { ldr.Errorf(s, "unexpected R_AARCH64_ABS64 relocation for dynamic symbol %s", ldr.SymName(targ)) } su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_ADDR) if target.IsPIE() && target.IsInternal() { // For internal linking PIE, this R_ADDR relocation cannot // be resolved statically. We need to generate a dynamic // relocation. Let the code below handle it. break } return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_LDST8_ABS_LO12_NC): if targType == sym.SDYNIMPORT { ldr.Errorf(s, "unexpected relocation for dynamic symbol %s", ldr.SymName(targ)) } su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_ARM64_LDST8) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_LDST16_ABS_LO12_NC): if targType == sym.SDYNIMPORT { ldr.Errorf(s, "unexpected relocation for dynamic symbol %s", ldr.SymName(targ)) } su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_ARM64_LDST16) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_LDST32_ABS_LO12_NC): if targType == sym.SDYNIMPORT { ldr.Errorf(s, "unexpected relocation for dynamic symbol %s", ldr.SymName(targ)) } su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_ARM64_LDST32) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_LDST64_ABS_LO12_NC): if targType == sym.SDYNIMPORT { ldr.Errorf(s, "unexpected relocation for dynamic symbol %s", ldr.SymName(targ)) } su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_ARM64_LDST64) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_LDST128_ABS_LO12_NC): if targType == sym.SDYNIMPORT { ldr.Errorf(s, "unexpected relocation for dynamic symbol %s", ldr.SymName(targ)) } su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_ARM64_LDST128) return true // Handle relocations found in Mach-O object files. case objabi.MachoRelocOffset + ld.MACHO_ARM64_RELOC_UNSIGNED*2: if targType == sym.SDYNIMPORT { ldr.Errorf(s, "unexpected reloc for dynamic symbol %s", ldr.SymName(targ)) } su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_ADDR) if target.IsPIE() && target.IsInternal() { // For internal linking PIE, this R_ADDR relocation cannot // be resolved statically. We need to generate a dynamic // relocation. Let the code below handle it. break } return true case objabi.MachoRelocOffset + ld.MACHO_ARM64_RELOC_BRANCH26*2 + pcrel: su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_CALLARM64) if targType == sym.SDYNIMPORT { addpltsym(target, ldr, syms, targ) su.SetRelocSym(rIdx, syms.PLT) su.SetRelocAdd(rIdx, int64(ldr.SymPlt(targ))) } return true case objabi.MachoRelocOffset + ld.MACHO_ARM64_RELOC_PAGE21*2 + pcrel, objabi.MachoRelocOffset + ld.MACHO_ARM64_RELOC_PAGEOFF12*2: if targType == sym.SDYNIMPORT { ldr.Errorf(s, "unexpected relocation for dynamic symbol %s", ldr.SymName(targ)) } su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_ARM64_PCREL) return true case objabi.MachoRelocOffset + ld.MACHO_ARM64_RELOC_GOT_LOAD_PAGE21*2 + pcrel, objabi.MachoRelocOffset + ld.MACHO_ARM64_RELOC_GOT_LOAD_PAGEOFF12*2: if targType != sym.SDYNIMPORT { // have symbol // turn MOVD sym@GOT (adrp+ldr) into MOVD $sym (adrp+add) data := ldr.Data(s) off := r.Off() if int(off+3) >= len(data) { ldr.Errorf(s, "unexpected GOT_LOAD reloc for non-dynamic symbol %s", ldr.SymName(targ)) return false } o := target.Arch.ByteOrder.Uint32(data[off:]) su := ldr.MakeSymbolUpdater(s) switch { case (o>>24)&0x9f == 0x90: // adrp // keep instruction unchanged, change relocation type below case o>>24 == 0xf9: // ldr // rewrite to add o = (0x91 << 24) | (o & (1<<22 - 1)) su.MakeWritable() su.SetUint32(target.Arch, int64(off), o) default: ldr.Errorf(s, "unexpected GOT_LOAD reloc for non-dynamic symbol %s", ldr.SymName(targ)) return false } su.SetRelocType(rIdx, objabi.R_ARM64_PCREL) return true } ld.AddGotSym(target, ldr, syms, targ, 0) su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_ARM64_GOT) su.SetRelocSym(rIdx, syms.GOT) su.SetRelocAdd(rIdx, int64(ldr.SymGot(targ))) return true } // Reread the reloc to incorporate any changes in type above. relocs := ldr.Relocs(s) r = relocs.At(rIdx) switch r.Type() { case objabi.R_CALLARM64: if targType != sym.SDYNIMPORT { // nothing to do, the relocation will be laid out in reloc return true } if target.IsExternal() { // External linker will do this relocation. return true } // Internal linking. if r.Add() != 0 { ldr.Errorf(s, "PLT call with non-zero addend (%v)", r.Add()) } // Build a PLT entry and change the relocation target to that entry. addpltsym(target, ldr, syms, targ) su := ldr.MakeSymbolUpdater(s) su.SetRelocSym(rIdx, syms.PLT) su.SetRelocAdd(rIdx, int64(ldr.SymPlt(targ))) return true case objabi.R_ADDRARM64: if targType == sym.SDYNIMPORT && ldr.SymType(s) == sym.STEXT && target.IsDarwin() { // Loading the address of a dynamic symbol. Rewrite to use GOT. // turn MOVD $sym (adrp+add) into MOVD sym@GOT (adrp+ldr) if r.Add() != 0 { ldr.Errorf(s, "unexpected nonzero addend for dynamic symbol %s", ldr.SymName(targ)) return false } su := ldr.MakeSymbolUpdater(s) data := ldr.Data(s) off := r.Off() if int(off+8) > len(data) { ldr.Errorf(s, "unexpected R_ADDRARM64 reloc for dynamic symbol %s", ldr.SymName(targ)) return false } o := target.Arch.ByteOrder.Uint32(data[off+4:]) if o>>24 == 0x91 { // add // rewrite to ldr o = (0xf9 << 24) | 1<<22 | (o & (1<<22 - 1)) su.MakeWritable() su.SetUint32(target.Arch, int64(off+4), o) if target.IsInternal() { ld.AddGotSym(target, ldr, syms, targ, 0) su.SetRelocSym(rIdx, syms.GOT) su.SetRelocAdd(rIdx, int64(ldr.SymGot(targ))) su.SetRelocType(rIdx, objabi.R_ARM64_PCREL_LDST64) } else { su.SetRelocType(rIdx, objabi.R_ARM64_GOTPCREL) } return true } ldr.Errorf(s, "unexpected R_ADDRARM64 reloc for dynamic symbol %s", ldr.SymName(targ)) } case objabi.R_ADDR: if ldr.SymType(s) == sym.STEXT && target.IsElf() { // The code is asking for the address of an external // function. We provide it with the address of the // correspondent GOT symbol. ld.AddGotSym(target, ldr, syms, targ, uint32(elf.R_AARCH64_GLOB_DAT)) su := ldr.MakeSymbolUpdater(s) su.SetRelocSym(rIdx, syms.GOT) su.SetRelocAdd(rIdx, r.Add()+int64(ldr.SymGot(targ))) return true } // Process dynamic relocations for the data sections. if target.IsPIE() && target.IsInternal() { // When internally linking, generate dynamic relocations // for all typical R_ADDR relocations. The exception // are those R_ADDR that are created as part of generating // the dynamic relocations and must be resolved statically. // // There are three phases relevant to understanding this: // // dodata() // we are here // address() // symbol address assignment // reloc() // resolution of static R_ADDR relocs // // At this point symbol addresses have not been // assigned yet (as the final size of the .rela section // will affect the addresses), and so we cannot write // the Elf64_Rela.r_offset now. Instead we delay it // until after the 'address' phase of the linker is // complete. We do this via Addaddrplus, which creates // a new R_ADDR relocation which will be resolved in // the 'reloc' phase. // // These synthetic static R_ADDR relocs must be skipped // now, or else we will be caught in an infinite loop // of generating synthetic relocs for our synthetic // relocs. // // Furthermore, the rela sections contain dynamic // relocations with R_ADDR relocations on // Elf64_Rela.r_offset. This field should contain the // symbol offset as determined by reloc(), not the // final dynamically linked address as a dynamic // relocation would provide. switch ldr.SymName(s) { case ".dynsym", ".rela", ".rela.plt", ".got.plt", ".dynamic": return false } } else { // Either internally linking a static executable, // in which case we can resolve these relocations // statically in the 'reloc' phase, or externally // linking, in which case the relocation will be // prepared in the 'reloc' phase and passed to the // external linker in the 'asmb' phase. if ldr.SymType(s) != sym.SDATA && ldr.SymType(s) != sym.SRODATA { break } } if target.IsElf() { // Generate R_AARCH64_RELATIVE relocations for best // efficiency in the dynamic linker. // // As noted above, symbol addresses have not been // assigned yet, so we can't generate the final reloc // entry yet. We ultimately want: // // r_offset = s + r.Off // r_info = R_AARCH64_RELATIVE // r_addend = targ + r.Add // // The dynamic linker will set *offset = base address + // addend. // // AddAddrPlus is used for r_offset and r_addend to // generate new R_ADDR relocations that will update // these fields in the 'reloc' phase. rela := ldr.MakeSymbolUpdater(syms.Rela) rela.AddAddrPlus(target.Arch, s, int64(r.Off())) if r.Siz() == 8 { rela.AddUint64(target.Arch, elf.R_INFO(0, uint32(elf.R_AARCH64_RELATIVE))) } else { ldr.Errorf(s, "unexpected relocation for dynamic symbol %s", ldr.SymName(targ)) } rela.AddAddrPlus(target.Arch, targ, int64(r.Add())) // Not mark r done here. So we still apply it statically, // so in the file content we'll also have the right offset // to the relocation target. So it can be examined statically // (e.g. go version). return true } if target.IsDarwin() { // Mach-O relocations are a royal pain to lay out. // They use a compact stateful bytecode representation. // Here we record what are needed and encode them later. ld.MachoAddRebase(s, int64(r.Off())) // Not mark r done here. So we still apply it statically, // so in the file content we'll also have the right offset // to the relocation target. So it can be examined statically // (e.g. go version). return true } case objabi.R_ARM64_GOTPCREL: if target.IsExternal() { // External linker will do this relocation. return true } if targType != sym.SDYNIMPORT { ldr.Errorf(s, "R_ARM64_GOTPCREL target is not SDYNIMPORT symbol: %v", ldr.SymName(targ)) } if r.Add() != 0 { ldr.Errorf(s, "R_ARM64_GOTPCREL with non-zero addend (%v)", r.Add()) } if target.IsElf() { ld.AddGotSym(target, ldr, syms, targ, uint32(elf.R_AARCH64_GLOB_DAT)) } else { ld.AddGotSym(target, ldr, syms, targ, 0) } // turn into two relocations, one for each instruction. su := ldr.MakeSymbolUpdater(s) r.SetType(objabi.R_ARM64_GOT) r.SetSiz(4) r.SetSym(syms.GOT) r.SetAdd(int64(ldr.SymGot(targ))) r2, _ := su.AddRel(objabi.R_ARM64_GOT) r2.SetSiz(4) r2.SetOff(r.Off() + 4) r2.SetSym(syms.GOT) r2.SetAdd(int64(ldr.SymGot(targ))) return true } return false } func elfreloc1(ctxt *ld.Link, out *ld.OutBuf, ldr *loader.Loader, s loader.Sym, r loader.ExtReloc, ri int, sectoff int64) bool { out.Write64(uint64(sectoff)) elfsym := ld.ElfSymForReloc(ctxt, r.Xsym) siz := r.Size switch r.Type { default: return false case objabi.R_ADDR, objabi.R_DWARFSECREF: switch siz { case 4: out.Write64(uint64(elf.R_AARCH64_ABS32) | uint64(elfsym)<<32) case 8: out.Write64(uint64(elf.R_AARCH64_ABS64) | uint64(elfsym)<<32) default: return false } case objabi.R_ADDRARM64: // two relocations: R_AARCH64_ADR_PREL_PG_HI21 and R_AARCH64_ADD_ABS_LO12_NC out.Write64(uint64(elf.R_AARCH64_ADR_PREL_PG_HI21) | uint64(elfsym)<<32) out.Write64(uint64(r.Xadd)) out.Write64(uint64(sectoff + 4)) out.Write64(uint64(elf.R_AARCH64_ADD_ABS_LO12_NC) | uint64(elfsym)<<32) case objabi.R_ARM64_PCREL_LDST8, objabi.R_ARM64_PCREL_LDST16, objabi.R_ARM64_PCREL_LDST32, objabi.R_ARM64_PCREL_LDST64: // two relocations: R_AARCH64_ADR_PREL_PG_HI21 and R_AARCH64_LDST{64/32/16/8}_ABS_LO12_NC out.Write64(uint64(elf.R_AARCH64_ADR_PREL_PG_HI21) | uint64(elfsym)<<32) out.Write64(uint64(r.Xadd)) out.Write64(uint64(sectoff + 4)) var ldstType elf.R_AARCH64 switch r.Type { case objabi.R_ARM64_PCREL_LDST8: ldstType = elf.R_AARCH64_LDST8_ABS_LO12_NC case objabi.R_ARM64_PCREL_LDST16: ldstType = elf.R_AARCH64_LDST16_ABS_LO12_NC case objabi.R_ARM64_PCREL_LDST32: ldstType = elf.R_AARCH64_LDST32_ABS_LO12_NC case objabi.R_ARM64_PCREL_LDST64: ldstType = elf.R_AARCH64_LDST64_ABS_LO12_NC } out.Write64(uint64(ldstType) | uint64(elfsym)<<32) case objabi.R_ARM64_TLS_LE: out.Write64(uint64(elf.R_AARCH64_TLSLE_MOVW_TPREL_G0) | uint64(elfsym)<<32) case objabi.R_ARM64_TLS_IE: out.Write64(uint64(elf.R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) | uint64(elfsym)<<32) out.Write64(uint64(r.Xadd)) out.Write64(uint64(sectoff + 4)) out.Write64(uint64(elf.R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) | uint64(elfsym)<<32) case objabi.R_ARM64_GOTPCREL: out.Write64(uint64(elf.R_AARCH64_ADR_GOT_PAGE) | uint64(elfsym)<<32) out.Write64(uint64(r.Xadd)) out.Write64(uint64(sectoff + 4)) out.Write64(uint64(elf.R_AARCH64_LD64_GOT_LO12_NC) | uint64(elfsym)<<32) case objabi.R_CALLARM64: if siz != 4 { return false } out.Write64(uint64(elf.R_AARCH64_CALL26) | uint64(elfsym)<<32) } out.Write64(uint64(r.Xadd)) return true } // sign-extends from 21, 24-bit. func signext21(x int64) int64 { return x << (64 - 21) >> (64 - 21) } func signext24(x int64) int64 { return x << (64 - 24) >> (64 - 24) } func machoreloc1(arch *sys.Arch, out *ld.OutBuf, ldr *loader.Loader, s loader.Sym, r loader.ExtReloc, sectoff int64) bool { var v uint32 rs := r.Xsym rt := r.Type siz := r.Size xadd := r.Xadd if xadd != signext24(xadd) && rt != objabi.R_ADDR { // If the relocation target would overflow the addend, then target // a linker-manufactured label symbol with a smaller addend instead. // R_ADDR has full-width addend encoded in data content, so it doesn't // use a label symbol. label := ldr.Lookup(offsetLabelName(ldr, rs, xadd/machoRelocLimit*machoRelocLimit), ldr.SymVersion(rs)) if label != 0 { xadd = ldr.SymValue(rs) + xadd - ldr.SymValue(label) rs = label } if xadd != signext24(xadd) { ldr.Errorf(s, "internal error: relocation addend overflow: %s+0x%x", ldr.SymName(rs), xadd) } } if rt == objabi.R_CALLARM64 && xadd != 0 { label := ldr.Lookup(offsetLabelName(ldr, rs, xadd), ldr.SymVersion(rs)) if label != 0 { xadd = ldr.SymValue(rs) + xadd - ldr.SymValue(label) // should always be 0 (checked below) rs = label } } if !ldr.SymType(s).IsDWARF() { if ldr.SymDynid(rs) < 0 { ldr.Errorf(s, "reloc %d (%s) to non-macho symbol %s type=%d (%s)", rt, sym.RelocName(arch, rt), ldr.SymName(rs), ldr.SymType(rs), ldr.SymType(rs)) return false } v = uint32(ldr.SymDynid(rs)) v |= 1 << 27 // external relocation } else { v = uint32(ldr.SymSect(rs).Extnum) if v == 0 { ldr.Errorf(s, "reloc %d (%s) to symbol %s in non-macho section %s type=%d (%s)", rt, sym.RelocName(arch, rt), ldr.SymName(rs), ldr.SymSect(rs).Name, ldr.SymType(rs), ldr.SymType(rs)) return false } } switch rt { default: return false case objabi.R_ADDR: v |= ld.MACHO_ARM64_RELOC_UNSIGNED << 28 case objabi.R_CALLARM64: if xadd != 0 { // Addend should be handled above via label symbols. ldr.Errorf(s, "unexpected non-zero addend: %s+%d", ldr.SymName(rs), xadd) } v |= 1 << 24 // pc-relative bit v |= ld.MACHO_ARM64_RELOC_BRANCH26 << 28 case objabi.R_ADDRARM64, objabi.R_ARM64_PCREL_LDST8, objabi.R_ARM64_PCREL_LDST16, objabi.R_ARM64_PCREL_LDST32, objabi.R_ARM64_PCREL_LDST64: siz = 4 // Two relocation entries: MACHO_ARM64_RELOC_PAGEOFF12 MACHO_ARM64_RELOC_PAGE21 // if r.Xadd is non-zero, add two MACHO_ARM64_RELOC_ADDEND. if r.Xadd != 0 { out.Write32(uint32(sectoff + 4)) out.Write32((ld.MACHO_ARM64_RELOC_ADDEND << 28) | (2 << 25) | uint32(xadd&0xffffff)) } out.Write32(uint32(sectoff + 4)) out.Write32(v | (ld.MACHO_ARM64_RELOC_PAGEOFF12 << 28) | (2 << 25)) if r.Xadd != 0 { out.Write32(uint32(sectoff)) out.Write32((ld.MACHO_ARM64_RELOC_ADDEND << 28) | (2 << 25) | uint32(xadd&0xffffff)) } v |= 1 << 24 // pc-relative bit v |= ld.MACHO_ARM64_RELOC_PAGE21 << 28 case objabi.R_ARM64_GOTPCREL: siz = 4 // Two relocation entries: MACHO_ARM64_RELOC_GOT_LOAD_PAGEOFF12 MACHO_ARM64_RELOC_GOT_LOAD_PAGE21 // if r.Xadd is non-zero, add two MACHO_ARM64_RELOC_ADDEND. if r.Xadd != 0 { out.Write32(uint32(sectoff + 4)) out.Write32((ld.MACHO_ARM64_RELOC_ADDEND << 28) | (2 << 25) | uint32(xadd&0xffffff)) } out.Write32(uint32(sectoff + 4)) out.Write32(v | (ld.MACHO_ARM64_RELOC_GOT_LOAD_PAGEOFF12 << 28) | (2 << 25)) if r.Xadd != 0 { out.Write32(uint32(sectoff)) out.Write32((ld.MACHO_ARM64_RELOC_ADDEND << 28) | (2 << 25) | uint32(xadd&0xffffff)) } v |= 1 << 24 // pc-relative bit v |= ld.MACHO_ARM64_RELOC_GOT_LOAD_PAGE21 << 28 } switch siz { default: return false case 1: v |= 0 << 25 case 2: v |= 1 << 25 case 4: v |= 2 << 25 case 8: v |= 3 << 25 } out.Write32(uint32(sectoff)) out.Write32(v) return true } func pereloc1(arch *sys.Arch, out *ld.OutBuf, ldr *loader.Loader, s loader.Sym, r loader.ExtReloc, sectoff int64) bool { rs := r.Xsym rt := r.Type if (rt == objabi.R_ADDRARM64 || rt == objabi.R_ARM64_PCREL_LDST8 || rt == objabi.R_ARM64_PCREL_LDST16 || rt == objabi.R_ARM64_PCREL_LDST32 || rt == objabi.R_ARM64_PCREL_LDST64) && r.Xadd != signext21(r.Xadd) { // If the relocation target would overflow the addend, then target // a linker-manufactured label symbol with a smaller addend instead. label := ldr.Lookup(offsetLabelName(ldr, rs, r.Xadd/peRelocLimit*peRelocLimit), ldr.SymVersion(rs)) if label == 0 { ldr.Errorf(s, "invalid relocation: %v %s+0x%x", rt, ldr.SymName(rs), r.Xadd) return false } rs = label } if rt == objabi.R_CALLARM64 && r.Xadd != 0 { label := ldr.Lookup(offsetLabelName(ldr, rs, r.Xadd), ldr.SymVersion(rs)) if label == 0 { ldr.Errorf(s, "invalid relocation: %v %s+0x%x", rt, ldr.SymName(rs), r.Xadd) return false } rs = label } symdynid := ldr.SymDynid(rs) if symdynid < 0 { ldr.Errorf(s, "reloc %d (%s) to non-coff symbol %s type=%d (%s)", rt, sym.RelocName(arch, rt), ldr.SymName(rs), ldr.SymType(rs), ldr.SymType(rs)) return false } switch rt { default: return false case objabi.R_DWARFSECREF: out.Write32(uint32(sectoff)) out.Write32(uint32(symdynid)) out.Write16(ld.IMAGE_REL_ARM64_SECREL) case objabi.R_ADDR: out.Write32(uint32(sectoff)) out.Write32(uint32(symdynid)) if r.Size == 8 { out.Write16(ld.IMAGE_REL_ARM64_ADDR64) } else { out.Write16(ld.IMAGE_REL_ARM64_ADDR32) } case objabi.R_PEIMAGEOFF: out.Write16(ld.IMAGE_REL_ARM64_ADDR32NB) case objabi.R_ADDRARM64: // Note: r.Xadd has been taken care of below, in archreloc. out.Write32(uint32(sectoff)) out.Write32(uint32(symdynid)) out.Write16(ld.IMAGE_REL_ARM64_PAGEBASE_REL21) out.Write32(uint32(sectoff + 4)) out.Write32(uint32(symdynid)) out.Write16(ld.IMAGE_REL_ARM64_PAGEOFFSET_12A) case objabi.R_ARM64_PCREL_LDST8, objabi.R_ARM64_PCREL_LDST16, objabi.R_ARM64_PCREL_LDST32, objabi.R_ARM64_PCREL_LDST64: // Note: r.Xadd has been taken care of below, in archreloc. out.Write32(uint32(sectoff)) out.Write32(uint32(symdynid)) out.Write16(ld.IMAGE_REL_ARM64_PAGEBASE_REL21) out.Write32(uint32(sectoff + 4)) out.Write32(uint32(symdynid)) out.Write16(ld.IMAGE_REL_ARM64_PAGEOFFSET_12L) case objabi.R_CALLARM64: // Note: r.Xadd has been taken care of above, by using a label pointing into the middle of the function. out.Write32(uint32(sectoff)) out.Write32(uint32(symdynid)) out.Write16(ld.IMAGE_REL_ARM64_BRANCH26) } return true } func archreloc(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, r loader.Reloc, s loader.Sym, val int64) (int64, int, bool) { const noExtReloc = 0 const isOk = true rs := r.Sym() if target.IsExternal() { nExtReloc := 0 switch rt := r.Type(); rt { default: case objabi.R_ARM64_GOTPCREL, objabi.R_ARM64_PCREL_LDST8, objabi.R_ARM64_PCREL_LDST16, objabi.R_ARM64_PCREL_LDST32, objabi.R_ARM64_PCREL_LDST64, objabi.R_ADDRARM64: // set up addend for eventual relocation via outer symbol. rs, off := ld.FoldSubSymbolOffset(ldr, rs) xadd := r.Add() + off rst := ldr.SymType(rs) if rst != sym.SHOSTOBJ && rst != sym.SDYNIMPORT && ldr.SymSect(rs) == nil { ldr.Errorf(s, "missing section for %s", ldr.SymName(rs)) } nExtReloc = 2 // need two ELF/Mach-O relocations. see elfreloc1/machoreloc1 if target.IsDarwin() && xadd != 0 { nExtReloc = 4 // need another two relocations for non-zero addend } if target.IsWindows() { var o0, o1 uint32 if target.IsBigEndian() { o0 = uint32(val >> 32) o1 = uint32(val) } else { o0 = uint32(val) o1 = uint32(val >> 32) } // The first instruction (ADRP) has a 21-bit immediate field, // and the second (ADD or LD/ST) has a 12-bit immediate field. // The first instruction is only for high bits, but to get the carry bits right we have // to put the full addend, including the bottom 12 bits again. // That limits the distance of any addend to only 21 bits. // But we assume that ADRP's top bit will be interpreted as a sign bit, // so we only use 20 bits. // pereloc takes care of introducing new symbol labels // every megabyte for longer relocations. xadd := uint32(xadd) o0 |= (xadd&3)<<29 | (xadd&0xffffc)<<3 switch rt { case objabi.R_ARM64_PCREL_LDST8, objabi.R_ADDRARM64: o1 |= (xadd & 0xfff) << 10 case objabi.R_ARM64_PCREL_LDST16: if xadd&0x1 != 0 { ldr.Errorf(s, "offset for 16-bit load/store has unaligned value %d", xadd&0xfff) } o1 |= ((xadd & 0xfff) >> 1) << 10 case objabi.R_ARM64_PCREL_LDST32: if xadd&0x3 != 0 { ldr.Errorf(s, "offset for 32-bit load/store has unaligned value %d", xadd&0xfff) } o1 |= ((xadd & 0xfff) >> 2) << 10 case objabi.R_ARM64_PCREL_LDST64: if xadd&0x7 != 0 { ldr.Errorf(s, "offset for 64-bit load/store has unaligned value %d", xadd&0xfff) } o1 |= ((xadd & 0xfff) >> 3) << 10 } if target.IsBigEndian() { val = int64(o0)<<32 | int64(o1) } else { val = int64(o1)<<32 | int64(o0) } } return val, nExtReloc, isOk case objabi.R_CALLARM64: nExtReloc = 1 return val, nExtReloc, isOk case objabi.R_ARM64_TLS_LE: nExtReloc = 1 return val, nExtReloc, isOk case objabi.R_ARM64_TLS_IE: nExtReloc = 2 // need two ELF relocations. see elfreloc1 return val, nExtReloc, isOk case objabi.R_ADDR: if target.IsWindows() && r.Add() != 0 { if r.Siz() == 8 { val = r.Add() } else if target.IsBigEndian() { val = int64(uint32(val)) | int64(r.Add())<<32 } else { val = val>>32<<32 | int64(uint32(r.Add())) } return val, 1, true } } } switch rt := r.Type(); rt { case objabi.R_ADDRARM64, objabi.R_ARM64_PCREL_LDST8, objabi.R_ARM64_PCREL_LDST16, objabi.R_ARM64_PCREL_LDST32, objabi.R_ARM64_PCREL_LDST64: t := ldr.SymAddr(rs) + r.Add() - ((ldr.SymValue(s) + int64(r.Off())) &^ 0xfff) if t >= 1<<32 || t < -1<<32 { ldr.Errorf(s, "program too large, address relocation distance = %d", t) } var o0, o1 uint32 if target.IsBigEndian() { o0 = uint32(val >> 32) o1 = uint32(val) } else { o0 = uint32(val) o1 = uint32(val >> 32) } o0 |= (uint32((t>>12)&3) << 29) | (uint32((t>>12>>2)&0x7ffff) << 5) switch rt { case objabi.R_ARM64_PCREL_LDST8, objabi.R_ADDRARM64: o1 |= uint32(t&0xfff) << 10 case objabi.R_ARM64_PCREL_LDST16: if t&0x1 != 0 { ldr.Errorf(s, "offset for 16-bit load/store has unaligned value %d", t&0xfff) } o1 |= (uint32(t&0xfff) >> 1) << 10 case objabi.R_ARM64_PCREL_LDST32: if t&0x3 != 0 { ldr.Errorf(s, "offset for 32-bit load/store has unaligned value %d", t&0xfff) } o1 |= (uint32(t&0xfff) >> 2) << 10 case objabi.R_ARM64_PCREL_LDST64: if t&0x7 != 0 { ldr.Errorf(s, "offset for 64-bit load/store has unaligned value %d", t&0xfff) } o1 |= (uint32(t&0xfff) >> 3) << 10 } // when laid out, the instruction order must always be o1, o2. if target.IsBigEndian() { return int64(o0)<<32 | int64(o1), noExtReloc, true } return int64(o1)<<32 | int64(o0), noExtReloc, true case objabi.R_ARM64_TLS_LE: if target.IsDarwin() { ldr.Errorf(s, "TLS reloc on unsupported OS %v", target.HeadType) } // The TCB is two pointers. This is not documented anywhere, but is // de facto part of the ABI. v := ldr.SymValue(rs) + int64(2*target.Arch.PtrSize) if v < 0 || v >= 32678 { ldr.Errorf(s, "TLS offset out of range %d", v) } return val | (v << 5), noExtReloc, true case objabi.R_ARM64_TLS_IE: if target.IsPIE() && target.IsElf() { // We are linking the final executable, so we // can optimize any TLS IE relocation to LE. if !target.IsLinux() { ldr.Errorf(s, "TLS reloc on unsupported OS %v", target.HeadType) } // The TCB is two pointers. This is not documented anywhere, but is // de facto part of the ABI. v := ldr.SymAddr(rs) + int64(2*target.Arch.PtrSize) + r.Add() if v < 0 || v >= 32678 { ldr.Errorf(s, "TLS offset out of range %d", v) } var o0, o1 uint32 if target.IsBigEndian() { o0 = uint32(val >> 32) o1 = uint32(val) } else { o0 = uint32(val) o1 = uint32(val >> 32) } // R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 // turn ADRP to MOVZ o0 = 0xd2a00000 | uint32(o0&0x1f) | (uint32((v>>16)&0xffff) << 5) // R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC // turn LD64 to MOVK if v&3 != 0 { ldr.Errorf(s, "invalid address: %x for relocation type: R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC", v) } o1 = 0xf2800000 | uint32(o1&0x1f) | (uint32(v&0xffff) << 5) // when laid out, the instruction order must always be o0, o1. if target.IsBigEndian() { return int64(o0)<<32 | int64(o1), noExtReloc, isOk } return int64(o1)<<32 | int64(o0), noExtReloc, isOk } else { log.Fatalf("cannot handle R_ARM64_TLS_IE (sym %s) when linking internally", ldr.SymName(s)) } case objabi.R_CALLARM64: var t int64 if ldr.SymType(rs) == sym.SDYNIMPORT { t = (ldr.SymAddr(syms.PLT) + r.Add()) - (ldr.SymValue(s) + int64(r.Off())) } else { t = (ldr.SymAddr(rs) + r.Add()) - (ldr.SymValue(s) + int64(r.Off())) } if t >= 1<<27 || t < -1<<27 { ldr.Errorf(s, "program too large, call relocation distance = %d", t) } return val | ((t >> 2) & 0x03ffffff), noExtReloc, true case objabi.R_ARM64_GOT: if (val>>24)&0x9f == 0x90 { // R_AARCH64_ADR_GOT_PAGE // patch instruction: adrp t := ldr.SymAddr(rs) + r.Add() - ((ldr.SymValue(s) + int64(r.Off())) &^ 0xfff) if t >= 1<<32 || t < -1<<32 { ldr.Errorf(s, "program too large, address relocation distance = %d", t) } var o0 uint32 o0 |= (uint32((t>>12)&3) << 29) | (uint32((t>>12>>2)&0x7ffff) << 5) return val | int64(o0), noExtReloc, isOk } else if val>>24 == 0xf9 { // R_AARCH64_LD64_GOT_LO12_NC // patch instruction: ldr t := ldr.SymAddr(rs) + r.Add() - ((ldr.SymValue(s) + int64(r.Off())) &^ 0xfff) if t&7 != 0 { ldr.Errorf(s, "invalid address: %x for relocation type: R_AARCH64_LD64_GOT_LO12_NC", t) } var o1 uint32 o1 |= uint32(t&0xfff) << (10 - 3) return val | int64(uint64(o1)), noExtReloc, isOk } else { ldr.Errorf(s, "unsupported instruction for %x R_GOTARM64", val) } case objabi.R_ARM64_PCREL: if (val>>24)&0x9f == 0x90 { // R_AARCH64_ADR_PREL_PG_HI21 // patch instruction: adrp t := ldr.SymAddr(rs) + r.Add() - ((ldr.SymValue(s) + int64(r.Off())) &^ 0xfff) if t >= 1<<32 || t < -1<<32 { ldr.Errorf(s, "program too large, address relocation distance = %d", t) } o0 := (uint32((t>>12)&3) << 29) | (uint32((t>>12>>2)&0x7ffff) << 5) return val | int64(o0), noExtReloc, isOk } else if (val>>24)&0x9f == 0x91 { // ELF R_AARCH64_ADD_ABS_LO12_NC or Mach-O ARM64_RELOC_PAGEOFF12 // patch instruction: add t := ldr.SymAddr(rs) + r.Add() - ((ldr.SymValue(s) + int64(r.Off())) &^ 0xfff) o1 := uint32(t&0xfff) << 10 return val | int64(o1), noExtReloc, isOk } else if (val>>24)&0x3b == 0x39 { // Mach-O ARM64_RELOC_PAGEOFF12 // patch ldr/str(b/h/w/d/q) (integer or vector) instructions, which have different scaling factors. // Mach-O uses same relocation type for them. shift := uint32(val) >> 30 if shift == 0 && (val>>20)&0x048 == 0x048 { // 128-bit vector load shift = 4 } t := ldr.SymAddr(rs) + r.Add() - ((ldr.SymValue(s) + int64(r.Off())) &^ 0xfff) if t&(1<> shift) << 10 return val | int64(o1), noExtReloc, isOk } else { ldr.Errorf(s, "unsupported instruction for %x R_ARM64_PCREL", val) } case objabi.R_ARM64_LDST8: t := ldr.SymAddr(rs) + r.Add() - ((ldr.SymValue(s) + int64(r.Off())) &^ 0xfff) o0 := uint32(t&0xfff) << 10 return val | int64(o0), noExtReloc, true case objabi.R_ARM64_LDST16: t := ldr.SymAddr(rs) + r.Add() - ((ldr.SymValue(s) + int64(r.Off())) &^ 0xfff) if t&1 != 0 { ldr.Errorf(s, "invalid address: %x for relocation type: R_AARCH64_LDST16_ABS_LO12_NC", t) } o0 := (uint32(t&0xfff) >> 1) << 10 return val | int64(o0), noExtReloc, true case objabi.R_ARM64_LDST32: t := ldr.SymAddr(rs) + r.Add() - ((ldr.SymValue(s) + int64(r.Off())) &^ 0xfff) if t&3 != 0 { ldr.Errorf(s, "invalid address: %x for relocation type: R_AARCH64_LDST32_ABS_LO12_NC", t) } o0 := (uint32(t&0xfff) >> 2) << 10 return val | int64(o0), noExtReloc, true case objabi.R_ARM64_LDST64: t := ldr.SymAddr(rs) + r.Add() - ((ldr.SymValue(s) + int64(r.Off())) &^ 0xfff) if t&7 != 0 { ldr.Errorf(s, "invalid address: %x for relocation type: R_AARCH64_LDST64_ABS_LO12_NC", t) } o0 := (uint32(t&0xfff) >> 3) << 10 return val | int64(o0), noExtReloc, true case objabi.R_ARM64_LDST128: t := ldr.SymAddr(rs) + r.Add() - ((ldr.SymValue(s) + int64(r.Off())) &^ 0xfff) if t&15 != 0 { ldr.Errorf(s, "invalid address: %x for relocation type: R_AARCH64_LDST128_ABS_LO12_NC", t) } o0 := (uint32(t&0xfff) >> 4) << 10 return val | int64(o0), noExtReloc, true } return val, 0, false } func archrelocvariant(*ld.Target, *loader.Loader, loader.Reloc, sym.RelocVariant, loader.Sym, int64, []byte) int64 { log.Fatalf("unexpected relocation variant") return -1 } func extreloc(target *ld.Target, ldr *loader.Loader, r loader.Reloc, s loader.Sym) (loader.ExtReloc, bool) { switch rt := r.Type(); rt { case objabi.R_ARM64_GOTPCREL, objabi.R_ARM64_PCREL_LDST8, objabi.R_ARM64_PCREL_LDST16, objabi.R_ARM64_PCREL_LDST32, objabi.R_ARM64_PCREL_LDST64, objabi.R_ADDRARM64: rr := ld.ExtrelocViaOuterSym(ldr, r, s) return rr, true case objabi.R_CALLARM64, objabi.R_ARM64_TLS_LE, objabi.R_ARM64_TLS_IE: return ld.ExtrelocSimple(ldr, r), true } return loader.ExtReloc{}, false } func elfsetupplt(ctxt *ld.Link, ldr *loader.Loader, plt, gotplt *loader.SymbolBuilder, dynamic loader.Sym) { if plt.Size() == 0 { // stp x16, x30, [sp, #-16]! // identifying information plt.AddUint32(ctxt.Arch, 0xa9bf7bf0) // the following two instructions (adrp + ldr) load *got[2] into x17 // adrp x16, &got[0] plt.AddSymRef(ctxt.Arch, gotplt.Sym(), 16, objabi.R_ARM64_GOT, 4) plt.SetUint32(ctxt.Arch, plt.Size()-4, 0x90000010) // is the offset value of &got[2] to &got[0], the same below // ldr x17, [x16, ] plt.AddSymRef(ctxt.Arch, gotplt.Sym(), 16, objabi.R_ARM64_GOT, 4) plt.SetUint32(ctxt.Arch, plt.Size()-4, 0xf9400211) // add x16, x16, plt.AddSymRef(ctxt.Arch, gotplt.Sym(), 16, objabi.R_ARM64_PCREL, 4) plt.SetUint32(ctxt.Arch, plt.Size()-4, 0x91000210) // br x17 plt.AddUint32(ctxt.Arch, 0xd61f0220) // 3 nop for place holder plt.AddUint32(ctxt.Arch, 0xd503201f) plt.AddUint32(ctxt.Arch, 0xd503201f) plt.AddUint32(ctxt.Arch, 0xd503201f) // check gotplt.size == 0 if gotplt.Size() != 0 { ctxt.Errorf(gotplt.Sym(), "got.plt is not empty at the very beginning") } gotplt.AddAddrPlus(ctxt.Arch, dynamic, 0) gotplt.AddUint64(ctxt.Arch, 0) gotplt.AddUint64(ctxt.Arch, 0) } } func addpltsym(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym) { if ldr.SymPlt(s) >= 0 { return } ld.Adddynsym(ldr, target, syms, s) if target.IsElf() { plt := ldr.MakeSymbolUpdater(syms.PLT) gotplt := ldr.MakeSymbolUpdater(syms.GOTPLT) rela := ldr.MakeSymbolUpdater(syms.RelaPLT) if plt.Size() == 0 { panic("plt is not set up") } // adrp x16, &got.plt[0] plt.AddAddrPlus4(target.Arch, gotplt.Sym(), gotplt.Size()) plt.SetUint32(target.Arch, plt.Size()-4, 0x90000010) relocs := plt.Relocs() plt.SetRelocType(relocs.Count()-1, objabi.R_ARM64_GOT) // is the offset value of &got.plt[n] to &got.plt[0] // ldr x17, [x16, ] plt.AddAddrPlus4(target.Arch, gotplt.Sym(), gotplt.Size()) plt.SetUint32(target.Arch, plt.Size()-4, 0xf9400211) relocs = plt.Relocs() plt.SetRelocType(relocs.Count()-1, objabi.R_ARM64_GOT) // add x16, x16, plt.AddAddrPlus4(target.Arch, gotplt.Sym(), gotplt.Size()) plt.SetUint32(target.Arch, plt.Size()-4, 0x91000210) relocs = plt.Relocs() plt.SetRelocType(relocs.Count()-1, objabi.R_ARM64_PCREL) // br x17 plt.AddUint32(target.Arch, 0xd61f0220) // add to got.plt: pointer to plt[0] gotplt.AddAddrPlus(target.Arch, plt.Sym(), 0) // rela rela.AddAddrPlus(target.Arch, gotplt.Sym(), gotplt.Size()-8) sDynid := ldr.SymDynid(s) rela.AddUint64(target.Arch, elf.R_INFO(uint32(sDynid), uint32(elf.R_AARCH64_JUMP_SLOT))) rela.AddUint64(target.Arch, 0) ldr.SetPlt(s, int32(plt.Size()-16)) } else if target.IsDarwin() { ld.AddGotSym(target, ldr, syms, s, 0) sDynid := ldr.SymDynid(s) lep := ldr.MakeSymbolUpdater(syms.LinkEditPLT) lep.AddUint32(target.Arch, uint32(sDynid)) plt := ldr.MakeSymbolUpdater(syms.PLT) ldr.SetPlt(s, int32(plt.Size())) // adrp x16, GOT plt.AddUint32(target.Arch, 0x90000010) r, _ := plt.AddRel(objabi.R_ARM64_GOT) r.SetOff(int32(plt.Size() - 4)) r.SetSiz(4) r.SetSym(syms.GOT) r.SetAdd(int64(ldr.SymGot(s))) // ldr x17, [x16, ] plt.AddUint32(target.Arch, 0xf9400211) r, _ = plt.AddRel(objabi.R_ARM64_GOT) r.SetOff(int32(plt.Size() - 4)) r.SetSiz(4) r.SetSym(syms.GOT) r.SetAdd(int64(ldr.SymGot(s))) // br x17 plt.AddUint32(target.Arch, 0xd61f0220) } else { ldr.Errorf(s, "addpltsym: unsupported binary format") } } const ( machoRelocLimit = 1 << 23 peRelocLimit = 1 << 20 ) func gensymlate(ctxt *ld.Link, ldr *loader.Loader) { // When external linking on darwin, Mach-O relocation has only signed 24-bit // addend. For large symbols, we generate "label" symbols in the middle, so // that relocations can target them with smaller addends. // On Windows, we only get 21 bits, again (presumably) signed. // Also, on Windows (always) and Darwin (for very large binaries), the external // linker does't support CALL relocations with addend, so we generate "label" // symbols for functions of which we can target the middle (Duff's devices). if !ctxt.IsDarwin() && !ctxt.IsWindows() || !ctxt.IsExternal() { return } limit := int64(machoRelocLimit) if ctxt.IsWindows() { limit = peRelocLimit } // addLabelSyms adds "label" symbols at s+limit, s+2*limit, etc. addLabelSyms := func(s loader.Sym, limit, sz int64) { v := ldr.SymValue(s) for off := limit; off < sz; off += limit { p := ldr.LookupOrCreateSym(offsetLabelName(ldr, s, off), ldr.SymVersion(s)) ldr.SetAttrReachable(p, true) ldr.SetSymValue(p, v+off) ldr.SetSymSect(p, ldr.SymSect(s)) if ctxt.IsDarwin() { ld.AddMachoSym(ldr, p) } else if ctxt.IsWindows() { ld.AddPELabelSym(ldr, p) } else { panic("missing case in gensymlate") } // fmt.Printf("gensymlate %s %x\n", ldr.SymName(p), ldr.SymValue(p)) } } // Generate symbol names for every offset we need in duffcopy/duffzero (only 64 each). if s := ldr.Lookup("runtime.duffcopy", sym.SymVerABIInternal); s != 0 && ldr.AttrReachable(s) { addLabelSyms(s, 8, 8*64) } if s := ldr.Lookup("runtime.duffzero", sym.SymVerABIInternal); s != 0 && ldr.AttrReachable(s) { addLabelSyms(s, 4, 4*64) } if ctxt.IsDarwin() { big := false for _, seg := range ld.Segments { if seg.Length >= machoRelocLimit { big = true break } } if !big { return // skip work if nothing big } } for s, n := loader.Sym(1), loader.Sym(ldr.NSym()); s < n; s++ { if !ldr.AttrReachable(s) { continue } t := ldr.SymType(s) if t == sym.STEXT { // Except for Duff's devices (handled above), we don't // target the middle of a function. continue } if t >= sym.SDWARFSECT { continue // no need to add label for DWARF symbols } sz := ldr.SymSize(s) if sz <= limit { continue } addLabelSyms(s, limit, sz) } // Also for carrier symbols (for which SymSize is 0) for _, ss := range ld.CarrierSymByType { if ss.Sym != 0 && ss.Size > limit { addLabelSyms(ss.Sym, limit, ss.Size) } } } // offsetLabelName returns the name of the "label" symbol used for a // relocation targeting s+off. The label symbols is used on Darwin/Windows // when external linking, so that the addend fits in a Mach-O/PE relocation. func offsetLabelName(ldr *loader.Loader, s loader.Sym, off int64) string { if off>>20<<20 == off { return fmt.Sprintf("%s+%dMB", ldr.SymExtname(s), off>>20) } return fmt.Sprintf("%s+%d", ldr.SymExtname(s), off) } // Convert the direct jump relocation r to refer to a trampoline if the target is too far. func trampoline(ctxt *ld.Link, ldr *loader.Loader, ri int, rs, s loader.Sym) { relocs := ldr.Relocs(s) r := relocs.At(ri) const pcrel = 1 switch r.Type() { case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_CALL26), objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_JUMP26), objabi.MachoRelocOffset + ld.MACHO_ARM64_RELOC_BRANCH26*2 + pcrel: // Host object relocations that will be turned into a PLT call. // The PLT may be too far. Insert a trampoline for them. fallthrough case objabi.R_CALLARM64: var t int64 // ldr.SymValue(rs) == 0 indicates a cross-package jump to a function that is not yet // laid out. Conservatively use a trampoline. This should be rare, as we lay out packages // in dependency order. if ldr.SymValue(rs) != 0 { t = ldr.SymValue(rs) + r.Add() - (ldr.SymValue(s) + int64(r.Off())) } if t >= 1<<27 || t < -1<<27 || ldr.SymValue(rs) == 0 || (*ld.FlagDebugTramp > 1 && (ldr.SymPkg(s) == "" || ldr.SymPkg(s) != ldr.SymPkg(rs))) { // direct call too far, need to insert trampoline. // look up existing trampolines first. if we found one within the range // of direct call, we can reuse it. otherwise create a new one. var tramp loader.Sym for i := 0; ; i++ { oName := ldr.SymName(rs) name := oName + fmt.Sprintf("%+x-tramp%d", r.Add(), i) tramp = ldr.LookupOrCreateSym(name, int(ldr.SymVersion(rs))) ldr.SetAttrReachable(tramp, true) if ldr.SymType(tramp) == sym.SDYNIMPORT { // don't reuse trampoline defined in other module continue } if oName == "runtime.deferreturn" { ldr.SetIsDeferReturnTramp(tramp, true) } if ldr.SymValue(tramp) == 0 { // either the trampoline does not exist -- we need to create one, // or found one the address which is not assigned -- this will be // laid down immediately after the current function. use this one. break } t = ldr.SymValue(tramp) - (ldr.SymValue(s) + int64(r.Off())) if t >= -1<<27 && t < 1<<27 { // found an existing trampoline that is not too far // we can just use it break } } if ldr.SymType(tramp) == 0 { // trampoline does not exist, create one trampb := ldr.MakeSymbolUpdater(tramp) ctxt.AddTramp(trampb) if ldr.SymType(rs) == sym.SDYNIMPORT { if r.Add() != 0 { ctxt.Errorf(s, "nonzero addend for DYNIMPORT call: %v+%d", ldr.SymName(rs), r.Add()) } gentrampgot(ctxt, ldr, trampb, rs) } else { gentramp(ctxt, ldr, trampb, rs, r.Add()) } } // modify reloc to point to tramp, which will be resolved later sb := ldr.MakeSymbolUpdater(s) relocs := sb.Relocs() r := relocs.At(ri) r.SetSym(tramp) r.SetAdd(0) // clear the offset embedded in the instruction } default: ctxt.Errorf(s, "trampoline called with non-jump reloc: %d (%s)", r.Type(), sym.RelocName(ctxt.Arch, r.Type())) } } // generate a trampoline to target+offset. func gentramp(ctxt *ld.Link, ldr *loader.Loader, tramp *loader.SymbolBuilder, target loader.Sym, offset int64) { tramp.SetSize(12) // 3 instructions P := make([]byte, tramp.Size()) o1 := uint32(0x90000010) // adrp x16, target o2 := uint32(0x91000210) // add x16, pc-relative-offset o3 := uint32(0xd61f0200) // br x16 ctxt.Arch.ByteOrder.PutUint32(P, o1) ctxt.Arch.ByteOrder.PutUint32(P[4:], o2) ctxt.Arch.ByteOrder.PutUint32(P[8:], o3) tramp.SetData(P) r, _ := tramp.AddRel(objabi.R_ADDRARM64) r.SetSiz(8) r.SetSym(target) r.SetAdd(offset) } // generate a trampoline to target+offset for a DYNIMPORT symbol via GOT. func gentrampgot(ctxt *ld.Link, ldr *loader.Loader, tramp *loader.SymbolBuilder, target loader.Sym) { tramp.SetSize(12) // 3 instructions P := make([]byte, tramp.Size()) o1 := uint32(0x90000010) // adrp x16, target@GOT o2 := uint32(0xf9400210) // ldr x16, [x16, offset] o3 := uint32(0xd61f0200) // br x16 ctxt.Arch.ByteOrder.PutUint32(P, o1) ctxt.Arch.ByteOrder.PutUint32(P[4:], o2) ctxt.Arch.ByteOrder.PutUint32(P[8:], o3) tramp.SetData(P) r, _ := tramp.AddRel(objabi.R_ARM64_GOTPCREL) r.SetSiz(8) r.SetSym(target) }