// Inferno utils/6l/asm.c // https://bitbucket.org/inferno-os/inferno-os/src/master/utils/6l/asm.c // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package amd64 import ( "cmd/internal/objabi" "cmd/internal/sys" "cmd/link/internal/ld" "cmd/link/internal/loader" "cmd/link/internal/sym" "debug/elf" "log" ) func PADDR(x uint32) uint32 { return x &^ 0x80000000 } func gentext(ctxt *ld.Link, ldr *loader.Loader) { initfunc, addmoduledata := ld.PrepareAddmoduledata(ctxt) if initfunc == nil { return } o := func(op ...uint8) { for _, op1 := range op { initfunc.AddUint8(op1) } } // 0000000000000000 : // 0: 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi # 7 // 3: R_X86_64_PC32 runtime.firstmoduledata-0x4 o(0x48, 0x8d, 0x3d) initfunc.AddPCRelPlus(ctxt.Arch, ctxt.Moduledata, 0) // 7: e8 00 00 00 00 callq c // 8: R_X86_64_PLT32 runtime.addmoduledata-0x4 o(0xe8) initfunc.AddSymRef(ctxt.Arch, addmoduledata, 0, objabi.R_CALL, 4) // c: c3 retq o(0xc3) } func adddynrel(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym, r loader.Reloc, rIdx int) bool { targ := r.Sym() var targType sym.SymKind if targ != 0 { targType = ldr.SymType(targ) } switch rt := r.Type(); rt { default: if rt >= objabi.ElfRelocOffset { ldr.Errorf(s, "unexpected relocation type %d (%s)", r.Type(), sym.RelocName(target.Arch, r.Type())) return false } // Handle relocations found in ELF object files. case objabi.ElfRelocOffset + objabi.RelocType(elf.R_X86_64_PC32): if targType == sym.SDYNIMPORT { ldr.Errorf(s, "unexpected R_X86_64_PC32 relocation for dynamic symbol %s", ldr.SymName(targ)) } if targType == 0 || targType == sym.SXREF { ldr.Errorf(s, "unknown symbol %s in pcrel", ldr.SymName(targ)) } su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_PCREL) su.SetRelocAdd(rIdx, r.Add()+4) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_X86_64_PC64): if targType == sym.SDYNIMPORT { ldr.Errorf(s, "unexpected R_X86_64_PC64 relocation for dynamic symbol %s", ldr.SymName(targ)) } if targType == 0 || targType == sym.SXREF { ldr.Errorf(s, "unknown symbol %s in pcrel", ldr.SymName(targ)) } su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_PCREL) su.SetRelocAdd(rIdx, r.Add()+8) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_X86_64_PLT32): su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_PCREL) su.SetRelocAdd(rIdx, r.Add()+4) if targType == sym.SDYNIMPORT { addpltsym(target, ldr, syms, targ) su.SetRelocSym(rIdx, syms.PLT) su.SetRelocAdd(rIdx, r.Add()+int64(ldr.SymPlt(targ))) } return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_X86_64_GOTPCREL), objabi.ElfRelocOffset + objabi.RelocType(elf.R_X86_64_GOTPCRELX), objabi.ElfRelocOffset + objabi.RelocType(elf.R_X86_64_REX_GOTPCRELX): su := ldr.MakeSymbolUpdater(s) if targType != sym.SDYNIMPORT { // have symbol sData := ldr.Data(s) if r.Off() >= 2 && sData[r.Off()-2] == 0x8b { su.MakeWritable() // turn MOVQ of GOT entry into LEAQ of symbol itself writeableData := su.Data() writeableData[r.Off()-2] = 0x8d su.SetRelocType(rIdx, objabi.R_PCREL) su.SetRelocAdd(rIdx, r.Add()+4) return true } } // fall back to using GOT and hope for the best (CMOV*) // TODO: just needs relocation, no need to put in .dynsym ld.AddGotSym(target, ldr, syms, targ, uint32(elf.R_X86_64_GLOB_DAT)) su.SetRelocType(rIdx, objabi.R_PCREL) su.SetRelocSym(rIdx, syms.GOT) su.SetRelocAdd(rIdx, r.Add()+4+int64(ldr.SymGot(targ))) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_X86_64_64): if targType == sym.SDYNIMPORT { ldr.Errorf(s, "unexpected R_X86_64_64 relocation for dynamic symbol %s", ldr.SymName(targ)) } su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_ADDR) if target.IsPIE() && target.IsInternal() { // For internal linking PIE, this R_ADDR relocation cannot // be resolved statically. We need to generate a dynamic // relocation. Let the code below handle it. break } return true // Handle relocations found in Mach-O object files. case objabi.MachoRelocOffset + ld.MACHO_X86_64_RELOC_UNSIGNED*2 + 0, objabi.MachoRelocOffset + ld.MACHO_X86_64_RELOC_SIGNED*2 + 0, objabi.MachoRelocOffset + ld.MACHO_X86_64_RELOC_BRANCH*2 + 0: su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_ADDR) if targType == sym.SDYNIMPORT { ldr.Errorf(s, "unexpected reloc for dynamic symbol %s", ldr.SymName(targ)) } if target.IsPIE() && target.IsInternal() { // For internal linking PIE, this R_ADDR relocation cannot // be resolved statically. We need to generate a dynamic // relocation. Let the code below handle it. if rt == objabi.MachoRelocOffset+ld.MACHO_X86_64_RELOC_UNSIGNED*2 { break } else { // MACHO_X86_64_RELOC_SIGNED or MACHO_X86_64_RELOC_BRANCH // Can this happen? The object is expected to be PIC. ldr.Errorf(s, "unsupported relocation for PIE: %v", rt) } } return true case objabi.MachoRelocOffset + ld.MACHO_X86_64_RELOC_BRANCH*2 + 1: if targType == sym.SDYNIMPORT { addpltsym(target, ldr, syms, targ) su := ldr.MakeSymbolUpdater(s) su.SetRelocSym(rIdx, syms.PLT) su.SetRelocType(rIdx, objabi.R_PCREL) su.SetRelocAdd(rIdx, int64(ldr.SymPlt(targ))) return true } fallthrough case objabi.MachoRelocOffset + ld.MACHO_X86_64_RELOC_UNSIGNED*2 + 1, objabi.MachoRelocOffset + ld.MACHO_X86_64_RELOC_SIGNED*2 + 1, objabi.MachoRelocOffset + ld.MACHO_X86_64_RELOC_SIGNED_1*2 + 1, objabi.MachoRelocOffset + ld.MACHO_X86_64_RELOC_SIGNED_2*2 + 1, objabi.MachoRelocOffset + ld.MACHO_X86_64_RELOC_SIGNED_4*2 + 1: su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_PCREL) if targType == sym.SDYNIMPORT { ldr.Errorf(s, "unexpected pc-relative reloc for dynamic symbol %s", ldr.SymName(targ)) } return true case objabi.MachoRelocOffset + ld.MACHO_X86_64_RELOC_GOT_LOAD*2 + 1: if targType != sym.SDYNIMPORT { // have symbol // turn MOVQ of GOT entry into LEAQ of symbol itself sdata := ldr.Data(s) if r.Off() < 2 || sdata[r.Off()-2] != 0x8b { ldr.Errorf(s, "unexpected GOT_LOAD reloc for non-dynamic symbol %s", ldr.SymName(targ)) return false } su := ldr.MakeSymbolUpdater(s) su.MakeWritable() sdata = su.Data() sdata[r.Off()-2] = 0x8d su.SetRelocType(rIdx, objabi.R_PCREL) return true } fallthrough case objabi.MachoRelocOffset + ld.MACHO_X86_64_RELOC_GOT*2 + 1: if targType != sym.SDYNIMPORT { ldr.Errorf(s, "unexpected GOT reloc for non-dynamic symbol %s", ldr.SymName(targ)) } ld.AddGotSym(target, ldr, syms, targ, 0) su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_PCREL) su.SetRelocSym(rIdx, syms.GOT) su.SetRelocAdd(rIdx, r.Add()+int64(ldr.SymGot(targ))) return true } // Reread the reloc to incorporate any changes in type above. relocs := ldr.Relocs(s) r = relocs.At(rIdx) switch r.Type() { case objabi.R_CALL: if targType != sym.SDYNIMPORT { // nothing to do, the relocation will be laid out in reloc return true } if target.IsExternal() { // External linker will do this relocation. return true } // Internal linking, for both ELF and Mach-O. // Build a PLT entry and change the relocation target to that entry. addpltsym(target, ldr, syms, targ) su := ldr.MakeSymbolUpdater(s) su.SetRelocSym(rIdx, syms.PLT) su.SetRelocAdd(rIdx, int64(ldr.SymPlt(targ))) return true case objabi.R_PCREL: if targType == sym.SDYNIMPORT && ldr.SymType(s) == sym.STEXT && target.IsDarwin() { // Loading the address of a dynamic symbol. Rewrite to use GOT. // turn LEAQ symbol address to MOVQ of GOT entry if r.Add() != 0 { ldr.Errorf(s, "unexpected nonzero addend for dynamic symbol %s", ldr.SymName(targ)) return false } su := ldr.MakeSymbolUpdater(s) if r.Off() >= 2 && su.Data()[r.Off()-2] == 0x8d { su.MakeWritable() su.Data()[r.Off()-2] = 0x8b if target.IsInternal() { ld.AddGotSym(target, ldr, syms, targ, 0) su.SetRelocSym(rIdx, syms.GOT) su.SetRelocAdd(rIdx, int64(ldr.SymGot(targ))) } else { su.SetRelocType(rIdx, objabi.R_GOTPCREL) } return true } ldr.Errorf(s, "unexpected R_PCREL reloc for dynamic symbol %s: not preceded by LEAQ instruction", ldr.SymName(targ)) } case objabi.R_ADDR: if ldr.SymType(s) == sym.STEXT && target.IsElf() { su := ldr.MakeSymbolUpdater(s) if target.IsSolaris() { addpltsym(target, ldr, syms, targ) su.SetRelocSym(rIdx, syms.PLT) su.SetRelocAdd(rIdx, r.Add()+int64(ldr.SymPlt(targ))) return true } // The code is asking for the address of an external // function. We provide it with the address of the // correspondent GOT symbol. ld.AddGotSym(target, ldr, syms, targ, uint32(elf.R_X86_64_GLOB_DAT)) su.SetRelocSym(rIdx, syms.GOT) su.SetRelocAdd(rIdx, r.Add()+int64(ldr.SymGot(targ))) return true } // Process dynamic relocations for the data sections. if target.IsPIE() && target.IsInternal() { // When internally linking, generate dynamic relocations // for all typical R_ADDR relocations. The exception // are those R_ADDR that are created as part of generating // the dynamic relocations and must be resolved statically. // // There are three phases relevant to understanding this: // // dodata() // we are here // address() // symbol address assignment // reloc() // resolution of static R_ADDR relocs // // At this point symbol addresses have not been // assigned yet (as the final size of the .rela section // will affect the addresses), and so we cannot write // the Elf64_Rela.r_offset now. Instead we delay it // until after the 'address' phase of the linker is // complete. We do this via Addaddrplus, which creates // a new R_ADDR relocation which will be resolved in // the 'reloc' phase. // // These synthetic static R_ADDR relocs must be skipped // now, or else we will be caught in an infinite loop // of generating synthetic relocs for our synthetic // relocs. // // Furthermore, the rela sections contain dynamic // relocations with R_ADDR relocations on // Elf64_Rela.r_offset. This field should contain the // symbol offset as determined by reloc(), not the // final dynamically linked address as a dynamic // relocation would provide. switch ldr.SymName(s) { case ".dynsym", ".rela", ".rela.plt", ".got.plt", ".dynamic": return false } } else { // Either internally linking a static executable, // in which case we can resolve these relocations // statically in the 'reloc' phase, or externally // linking, in which case the relocation will be // prepared in the 'reloc' phase and passed to the // external linker in the 'asmb' phase. if ldr.SymType(s) != sym.SDATA && ldr.SymType(s) != sym.SRODATA { break } } if target.IsElf() { // Generate R_X86_64_RELATIVE relocations for best // efficiency in the dynamic linker. // // As noted above, symbol addresses have not been // assigned yet, so we can't generate the final reloc // entry yet. We ultimately want: // // r_offset = s + r.Off // r_info = R_X86_64_RELATIVE // r_addend = targ + r.Add // // The dynamic linker will set *offset = base address + // addend. // // AddAddrPlus is used for r_offset and r_addend to // generate new R_ADDR relocations that will update // these fields in the 'reloc' phase. rela := ldr.MakeSymbolUpdater(syms.Rela) rela.AddAddrPlus(target.Arch, s, int64(r.Off())) if r.Siz() == 8 { rela.AddUint64(target.Arch, elf.R_INFO(0, uint32(elf.R_X86_64_RELATIVE))) } else { ldr.Errorf(s, "unexpected relocation for dynamic symbol %s", ldr.SymName(targ)) } rela.AddAddrPlus(target.Arch, targ, int64(r.Add())) // Not mark r done here. So we still apply it statically, // so in the file content we'll also have the right offset // to the relocation target. So it can be examined statically // (e.g. go version). return true } if target.IsDarwin() { // Mach-O relocations are a royal pain to lay out. // They use a compact stateful bytecode representation. // Here we record what are needed and encode them later. ld.MachoAddRebase(s, int64(r.Off())) // Not mark r done here. So we still apply it statically, // so in the file content we'll also have the right offset // to the relocation target. So it can be examined statically // (e.g. go version). return true } } return false } func elfreloc1(ctxt *ld.Link, out *ld.OutBuf, ldr *loader.Loader, s loader.Sym, r loader.ExtReloc, ri int, sectoff int64) bool { out.Write64(uint64(sectoff)) elfsym := ld.ElfSymForReloc(ctxt, r.Xsym) siz := r.Size switch r.Type { default: return false case objabi.R_ADDR, objabi.R_DWARFSECREF: if siz == 4 { out.Write64(uint64(elf.R_X86_64_32) | uint64(elfsym)<<32) } else if siz == 8 { out.Write64(uint64(elf.R_X86_64_64) | uint64(elfsym)<<32) } else { return false } case objabi.R_TLS_LE: if siz == 4 { out.Write64(uint64(elf.R_X86_64_TPOFF32) | uint64(elfsym)<<32) } else { return false } case objabi.R_TLS_IE: if siz == 4 { out.Write64(uint64(elf.R_X86_64_GOTTPOFF) | uint64(elfsym)<<32) } else { return false } case objabi.R_CALL: if siz == 4 { if ldr.SymType(r.Xsym) == sym.SDYNIMPORT { out.Write64(uint64(elf.R_X86_64_PLT32) | uint64(elfsym)<<32) } else { out.Write64(uint64(elf.R_X86_64_PC32) | uint64(elfsym)<<32) } } else { return false } case objabi.R_PCREL: if siz == 4 { if ldr.SymType(r.Xsym) == sym.SDYNIMPORT && ldr.SymElfType(r.Xsym) == elf.STT_FUNC { out.Write64(uint64(elf.R_X86_64_PLT32) | uint64(elfsym)<<32) } else { out.Write64(uint64(elf.R_X86_64_PC32) | uint64(elfsym)<<32) } } else { return false } case objabi.R_GOTPCREL: if siz == 4 { out.Write64(uint64(elf.R_X86_64_GOTPCREL) | uint64(elfsym)<<32) } else { return false } } out.Write64(uint64(r.Xadd)) return true } func machoreloc1(arch *sys.Arch, out *ld.OutBuf, ldr *loader.Loader, s loader.Sym, r loader.ExtReloc, sectoff int64) bool { var v uint32 rs := r.Xsym rt := r.Type if !ldr.SymType(s).IsDWARF() { if ldr.SymDynid(rs) < 0 { ldr.Errorf(s, "reloc %d (%s) to non-macho symbol %s type=%d (%s)", rt, sym.RelocName(arch, rt), ldr.SymName(rs), ldr.SymType(rs), ldr.SymType(rs)) return false } v = uint32(ldr.SymDynid(rs)) v |= 1 << 27 // external relocation } else { v = uint32(ldr.SymSect(rs).Extnum) if v == 0 { ldr.Errorf(s, "reloc %d (%s) to symbol %s in non-macho section %s type=%d (%s)", rt, sym.RelocName(arch, rt), ldr.SymName(rs), ldr.SymSect(rs).Name, ldr.SymType(rs), ldr.SymType(rs)) return false } } switch rt { default: return false case objabi.R_ADDR: v |= ld.MACHO_X86_64_RELOC_UNSIGNED << 28 case objabi.R_CALL: v |= 1 << 24 // pc-relative bit v |= ld.MACHO_X86_64_RELOC_BRANCH << 28 // NOTE: Only works with 'external' relocation. Forced above. case objabi.R_PCREL: v |= 1 << 24 // pc-relative bit v |= ld.MACHO_X86_64_RELOC_SIGNED << 28 case objabi.R_GOTPCREL: v |= 1 << 24 // pc-relative bit v |= ld.MACHO_X86_64_RELOC_GOT_LOAD << 28 } switch r.Size { default: return false case 1: v |= 0 << 25 case 2: v |= 1 << 25 case 4: v |= 2 << 25 case 8: v |= 3 << 25 } out.Write32(uint32(sectoff)) out.Write32(v) return true } func pereloc1(arch *sys.Arch, out *ld.OutBuf, ldr *loader.Loader, s loader.Sym, r loader.ExtReloc, sectoff int64) bool { var v uint32 rs := r.Xsym rt := r.Type if ldr.SymDynid(rs) < 0 { ldr.Errorf(s, "reloc %d (%s) to non-coff symbol %s type=%d (%s)", rt, sym.RelocName(arch, rt), ldr.SymName(rs), ldr.SymType(rs), ldr.SymType(rs)) return false } out.Write32(uint32(sectoff)) out.Write32(uint32(ldr.SymDynid(rs))) switch rt { default: return false case objabi.R_DWARFSECREF: v = ld.IMAGE_REL_AMD64_SECREL case objabi.R_ADDR: if r.Size == 8 { v = ld.IMAGE_REL_AMD64_ADDR64 } else { v = ld.IMAGE_REL_AMD64_ADDR32 } case objabi.R_PEIMAGEOFF: v = ld.IMAGE_REL_AMD64_ADDR32NB case objabi.R_CALL, objabi.R_PCREL: v = ld.IMAGE_REL_AMD64_REL32 } out.Write16(uint16(v)) return true } func archreloc(*ld.Target, *loader.Loader, *ld.ArchSyms, loader.Reloc, loader.Sym, int64) (int64, int, bool) { return -1, 0, false } func archrelocvariant(*ld.Target, *loader.Loader, loader.Reloc, sym.RelocVariant, loader.Sym, int64, []byte) int64 { log.Fatalf("unexpected relocation variant") return -1 } func elfsetupplt(ctxt *ld.Link, ldr *loader.Loader, plt, got *loader.SymbolBuilder, dynamic loader.Sym) { if plt.Size() == 0 { // pushq got+8(IP) plt.AddUint8(0xff) plt.AddUint8(0x35) plt.AddPCRelPlus(ctxt.Arch, got.Sym(), 8) // jmpq got+16(IP) plt.AddUint8(0xff) plt.AddUint8(0x25) plt.AddPCRelPlus(ctxt.Arch, got.Sym(), 16) // nopl 0(AX) plt.AddUint32(ctxt.Arch, 0x00401f0f) // assume got->size == 0 too got.AddAddrPlus(ctxt.Arch, dynamic, 0) got.AddUint64(ctxt.Arch, 0) got.AddUint64(ctxt.Arch, 0) } } func addpltsym(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym) { if ldr.SymPlt(s) >= 0 { return } ld.Adddynsym(ldr, target, syms, s) if target.IsElf() { plt := ldr.MakeSymbolUpdater(syms.PLT) got := ldr.MakeSymbolUpdater(syms.GOTPLT) rela := ldr.MakeSymbolUpdater(syms.RelaPLT) if plt.Size() == 0 { panic("plt is not set up") } // jmpq *got+size(IP) plt.AddUint8(0xff) plt.AddUint8(0x25) plt.AddPCRelPlus(target.Arch, got.Sym(), got.Size()) // add to got: pointer to current pos in plt got.AddAddrPlus(target.Arch, plt.Sym(), plt.Size()) // pushq $x plt.AddUint8(0x68) plt.AddUint32(target.Arch, uint32((got.Size()-24-8)/8)) // jmpq .plt plt.AddUint8(0xe9) plt.AddUint32(target.Arch, uint32(-(plt.Size() + 4))) // rela rela.AddAddrPlus(target.Arch, got.Sym(), got.Size()-8) sDynid := ldr.SymDynid(s) rela.AddUint64(target.Arch, elf.R_INFO(uint32(sDynid), uint32(elf.R_X86_64_JMP_SLOT))) rela.AddUint64(target.Arch, 0) ldr.SetPlt(s, int32(plt.Size()-16)) } else if target.IsDarwin() { ld.AddGotSym(target, ldr, syms, s, 0) sDynid := ldr.SymDynid(s) lep := ldr.MakeSymbolUpdater(syms.LinkEditPLT) lep.AddUint32(target.Arch, uint32(sDynid)) plt := ldr.MakeSymbolUpdater(syms.PLT) ldr.SetPlt(s, int32(plt.Size())) // jmpq *got+size(IP) plt.AddUint8(0xff) plt.AddUint8(0x25) plt.AddPCRelPlus(target.Arch, syms.GOT, int64(ldr.SymGot(s))) } else { ldr.Errorf(s, "addpltsym: unsupported binary format") } } func tlsIEtoLE(P []byte, off, size int) { // Transform the PC-relative instruction into a constant load. // That is, // // MOVQ X(IP), REG -> MOVQ $Y, REG // // To determine the instruction and register, we study the op codes. // Consult an AMD64 instruction encoding guide to decipher this. if off < 3 { log.Fatal("R_X86_64_GOTTPOFF reloc not preceded by MOVQ or ADDQ instruction") } op := P[off-3 : off] reg := op[2] >> 3 if op[1] == 0x8b || reg == 4 { // MOVQ if op[0] == 0x4c { op[0] = 0x49 } else if size == 4 && op[0] == 0x44 { op[0] = 0x41 } if op[1] == 0x8b { op[1] = 0xc7 } else { op[1] = 0x81 // special case for SP } op[2] = 0xc0 | reg } else { // An alternate op is ADDQ. This is handled by GNU gold, // but right now is not generated by the Go compiler: // ADDQ X(IP), REG -> ADDQ $Y, REG // Consider adding support for it here. log.Fatalf("expected TLS IE op to be MOVQ, got %v", op) } }