// Copyright 2019 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Writes dwarf information to object files. package obj import ( "cmd/internal/dwarf" "cmd/internal/objabi" "cmd/internal/src" "fmt" "sort" "sync" ) // Generate a sequence of opcodes that is as short as possible. // See section 6.2.5 const ( LINE_BASE = -4 LINE_RANGE = 10 PC_RANGE = (255 - OPCODE_BASE) / LINE_RANGE OPCODE_BASE = 11 ) // generateDebugLinesSymbol fills the debug lines symbol of a given function. // // It's worth noting that this function doesn't generate the full debug_lines // DWARF section, saving that for the linker. This function just generates the // state machine part of debug_lines. The full table is generated by the // linker. Also, we use the file numbers from the full package (not just the // function in question) when generating the state machine. We do this so we // don't have to do a fixup on the indices when writing the full section. func (ctxt *Link) generateDebugLinesSymbol(s, lines *LSym) { dctxt := dwCtxt{ctxt} // Emit a LNE_set_address extended opcode, so as to establish the // starting text address of this function. dctxt.AddUint8(lines, 0) dwarf.Uleb128put(dctxt, lines, 1+int64(ctxt.Arch.PtrSize)) dctxt.AddUint8(lines, dwarf.DW_LNE_set_address) dctxt.AddAddress(lines, s, 0) // Set up the debug_lines state machine to the default values // we expect at the start of a new sequence. stmt := true line := int64(1) pc := s.Func().Text.Pc var lastpc int64 // last PC written to line table, not last PC in func fileIndex := 1 prologue, wrotePrologue := false, false // Walk the progs, generating the DWARF table. for p := s.Func().Text; p != nil; p = p.Link { prologue = prologue || (p.Pos.Xlogue() == src.PosPrologueEnd) // If we're not at a real instruction, keep looping! if p.Pos.Line() == 0 || (p.Link != nil && p.Link.Pc == p.Pc) { continue } newStmt := p.Pos.IsStmt() != src.PosNotStmt newFileIndex, newLine := ctxt.getFileIndexAndLine(p.Pos) newFileIndex++ // 1 indexing for the table // Output debug info. wrote := false if newFileIndex != fileIndex { dctxt.AddUint8(lines, dwarf.DW_LNS_set_file) dwarf.Uleb128put(dctxt, lines, int64(newFileIndex)) fileIndex = newFileIndex wrote = true } if prologue && !wrotePrologue { dctxt.AddUint8(lines, uint8(dwarf.DW_LNS_set_prologue_end)) wrotePrologue = true wrote = true } if stmt != newStmt { dctxt.AddUint8(lines, uint8(dwarf.DW_LNS_negate_stmt)) stmt = newStmt wrote = true } if line != int64(newLine) || wrote { pcdelta := p.Pc - pc lastpc = p.Pc putpclcdelta(ctxt, dctxt, lines, uint64(pcdelta), int64(newLine)-line) line, pc = int64(newLine), p.Pc } } // Because these symbols will be concatenated together by the // linker, we need to reset the state machine that controls the // debug symbols. Do this using an end-of-sequence operator. // // Note: at one point in time, Delve did not support multiple end // sequence ops within a compilation unit (bug for this: // https://github.com/go-delve/delve/issues/1694), however the bug // has since been fixed (Oct 2019). // // Issue 38192: the DWARF standard specifies that when you issue // an end-sequence op, the PC value should be one past the last // text address in the translation unit, so apply a delta to the // text address before the end sequence op. If this isn't done, // GDB will assign a line number of zero the last row in the line // table, which we don't want. lastlen := uint64(s.Size - (lastpc - s.Func().Text.Pc)) dctxt.AddUint8(lines, dwarf.DW_LNS_advance_pc) dwarf.Uleb128put(dctxt, lines, int64(lastlen)) dctxt.AddUint8(lines, 0) // start extended opcode dwarf.Uleb128put(dctxt, lines, 1) dctxt.AddUint8(lines, dwarf.DW_LNE_end_sequence) } func putpclcdelta(linkctxt *Link, dctxt dwCtxt, s *LSym, deltaPC uint64, deltaLC int64) { // Choose a special opcode that minimizes the number of bytes needed to // encode the remaining PC delta and LC delta. var opcode int64 if deltaLC < LINE_BASE { if deltaPC >= PC_RANGE { opcode = OPCODE_BASE + (LINE_RANGE * PC_RANGE) } else { opcode = OPCODE_BASE + (LINE_RANGE * int64(deltaPC)) } } else if deltaLC < LINE_BASE+LINE_RANGE { if deltaPC >= PC_RANGE { opcode = OPCODE_BASE + (deltaLC - LINE_BASE) + (LINE_RANGE * PC_RANGE) if opcode > 255 { opcode -= LINE_RANGE } } else { opcode = OPCODE_BASE + (deltaLC - LINE_BASE) + (LINE_RANGE * int64(deltaPC)) } } else { if deltaPC <= PC_RANGE { opcode = OPCODE_BASE + (LINE_RANGE - 1) + (LINE_RANGE * int64(deltaPC)) if opcode > 255 { opcode = 255 } } else { // Use opcode 249 (pc+=23, lc+=5) or 255 (pc+=24, lc+=1). // // Let x=deltaPC-PC_RANGE. If we use opcode 255, x will be the remaining // deltaPC that we need to encode separately before emitting 255. If we // use opcode 249, we will need to encode x+1. If x+1 takes one more // byte to encode than x, then we use opcode 255. // // In all other cases x and x+1 take the same number of bytes to encode, // so we use opcode 249, which may save us a byte in encoding deltaLC, // for similar reasons. switch deltaPC - PC_RANGE { // PC_RANGE is the largest deltaPC we can encode in one byte, using // DW_LNS_const_add_pc. // // (1<<16)-1 is the largest deltaPC we can encode in three bytes, using // DW_LNS_fixed_advance_pc. // // (1<<(7n))-1 is the largest deltaPC we can encode in n+1 bytes for // n=1,3,4,5,..., using DW_LNS_advance_pc. case PC_RANGE, (1 << 7) - 1, (1 << 16) - 1, (1 << 21) - 1, (1 << 28) - 1, (1 << 35) - 1, (1 << 42) - 1, (1 << 49) - 1, (1 << 56) - 1, (1 << 63) - 1: opcode = 255 default: opcode = OPCODE_BASE + LINE_RANGE*PC_RANGE - 1 // 249 } } } if opcode < OPCODE_BASE || opcode > 255 { panic(fmt.Sprintf("produced invalid special opcode %d", opcode)) } // Subtract from deltaPC and deltaLC the amounts that the opcode will add. deltaPC -= uint64((opcode - OPCODE_BASE) / LINE_RANGE) deltaLC -= (opcode-OPCODE_BASE)%LINE_RANGE + LINE_BASE // Encode deltaPC. if deltaPC != 0 { if deltaPC <= PC_RANGE { // Adjust the opcode so that we can use the 1-byte DW_LNS_const_add_pc // instruction. opcode -= LINE_RANGE * int64(PC_RANGE-deltaPC) if opcode < OPCODE_BASE { panic(fmt.Sprintf("produced invalid special opcode %d", opcode)) } dctxt.AddUint8(s, dwarf.DW_LNS_const_add_pc) } else if (1<<14) <= deltaPC && deltaPC < (1<<16) { dctxt.AddUint8(s, dwarf.DW_LNS_fixed_advance_pc) dctxt.AddUint16(s, uint16(deltaPC)) } else { dctxt.AddUint8(s, dwarf.DW_LNS_advance_pc) dwarf.Uleb128put(dctxt, s, int64(deltaPC)) } } // Encode deltaLC. if deltaLC != 0 { dctxt.AddUint8(s, dwarf.DW_LNS_advance_line) dwarf.Sleb128put(dctxt, s, deltaLC) } // Output the special opcode. dctxt.AddUint8(s, uint8(opcode)) } // implement dwarf.Context type dwCtxt struct{ *Link } func (c dwCtxt) PtrSize() int { return c.Arch.PtrSize } func (c dwCtxt) Size(s dwarf.Sym) int64 { return s.(*LSym).Size } func (c dwCtxt) AddInt(s dwarf.Sym, size int, i int64) { ls := s.(*LSym) ls.WriteInt(c.Link, ls.Size, size, i) } func (c dwCtxt) AddUint16(s dwarf.Sym, i uint16) { c.AddInt(s, 2, int64(i)) } func (c dwCtxt) AddUint8(s dwarf.Sym, i uint8) { b := []byte{byte(i)} c.AddBytes(s, b) } func (c dwCtxt) AddBytes(s dwarf.Sym, b []byte) { ls := s.(*LSym) ls.WriteBytes(c.Link, ls.Size, b) } func (c dwCtxt) AddString(s dwarf.Sym, v string) { ls := s.(*LSym) ls.WriteString(c.Link, ls.Size, len(v), v) ls.WriteInt(c.Link, ls.Size, 1, 0) } func (c dwCtxt) AddAddress(s dwarf.Sym, data interface{}, value int64) { ls := s.(*LSym) size := c.PtrSize() if data != nil { rsym := data.(*LSym) ls.WriteAddr(c.Link, ls.Size, size, rsym, value) } else { ls.WriteInt(c.Link, ls.Size, size, value) } } func (c dwCtxt) AddCURelativeAddress(s dwarf.Sym, data interface{}, value int64) { ls := s.(*LSym) rsym := data.(*LSym) ls.WriteCURelativeAddr(c.Link, ls.Size, rsym, value) } func (c dwCtxt) AddSectionOffset(s dwarf.Sym, size int, t interface{}, ofs int64) { panic("should be used only in the linker") } func (c dwCtxt) AddDWARFAddrSectionOffset(s dwarf.Sym, t interface{}, ofs int64) { size := 4 if isDwarf64(c.Link) { size = 8 } ls := s.(*LSym) rsym := t.(*LSym) ls.WriteAddr(c.Link, ls.Size, size, rsym, ofs) r := &ls.R[len(ls.R)-1] r.Type = objabi.R_DWARFSECREF } func (c dwCtxt) CurrentOffset(s dwarf.Sym) int64 { ls := s.(*LSym) return ls.Size } // Here "from" is a symbol corresponding to an inlined or concrete // function, "to" is the symbol for the corresponding abstract // function, and "dclIdx" is the index of the symbol of interest with // respect to the Dcl slice of the original pre-optimization version // of the inlined function. func (c dwCtxt) RecordDclReference(from dwarf.Sym, to dwarf.Sym, dclIdx int, inlIndex int) { ls := from.(*LSym) tls := to.(*LSym) ridx := len(ls.R) - 1 c.Link.DwFixups.ReferenceChildDIE(ls, ridx, tls, dclIdx, inlIndex) } func (c dwCtxt) RecordChildDieOffsets(s dwarf.Sym, vars []*dwarf.Var, offsets []int32) { ls := s.(*LSym) c.Link.DwFixups.RegisterChildDIEOffsets(ls, vars, offsets) } func (c dwCtxt) Logf(format string, args ...interface{}) { c.Link.Logf(format, args...) } func isDwarf64(ctxt *Link) bool { return ctxt.Headtype == objabi.Haix } func (ctxt *Link) dwarfSym(s *LSym) (dwarfInfoSym, dwarfLocSym, dwarfRangesSym, dwarfAbsFnSym, dwarfDebugLines *LSym) { if s.Type != objabi.STEXT { ctxt.Diag("dwarfSym of non-TEXT %v", s) } fn := s.Func() if fn.dwarfInfoSym == nil { fn.dwarfInfoSym = &LSym{ Type: objabi.SDWARFFCN, } if ctxt.Flag_locationlists { fn.dwarfLocSym = &LSym{ Type: objabi.SDWARFLOC, } } fn.dwarfRangesSym = &LSym{ Type: objabi.SDWARFRANGE, } fn.dwarfDebugLinesSym = &LSym{ Type: objabi.SDWARFLINES, } if s.WasInlined() { fn.dwarfAbsFnSym = ctxt.DwFixups.AbsFuncDwarfSym(s) } } return fn.dwarfInfoSym, fn.dwarfLocSym, fn.dwarfRangesSym, fn.dwarfAbsFnSym, fn.dwarfDebugLinesSym } // textPos returns the source position of the first instruction (prog) // of the specified function. func textPos(fn *LSym) src.XPos { if p := fn.Func().Text; p != nil { return p.Pos } return src.NoXPos } // populateDWARF fills in the DWARF Debugging Information Entries for // TEXT symbol 's'. The various DWARF symbols must already have been // initialized in InitTextSym. func (ctxt *Link) populateDWARF(curfn Func, s *LSym) { myimportpath := ctxt.Pkgpath if myimportpath == "" { return } info, loc, ranges, absfunc, lines := ctxt.dwarfSym(s) if info.Size != 0 { ctxt.Diag("makeFuncDebugEntry double process %v", s) } var scopes []dwarf.Scope var inlcalls dwarf.InlCalls if ctxt.DebugInfo != nil { scopes, inlcalls = ctxt.DebugInfo(s, info, curfn) } var err error dwctxt := dwCtxt{ctxt} startPos := ctxt.InnermostPos(textPos(s)) if !startPos.IsKnown() || startPos.RelLine() != uint(s.Func().StartLine) { panic("bad startPos") } fnstate := &dwarf.FnState{ Name: s.Name, Info: info, Loc: loc, Ranges: ranges, Absfn: absfunc, StartPC: s, Size: s.Size, StartPos: startPos, External: !s.Static(), Scopes: scopes, InlCalls: inlcalls, UseBASEntries: ctxt.UseBASEntries, } if absfunc != nil { err = dwarf.PutAbstractFunc(dwctxt, fnstate) if err != nil { ctxt.Diag("emitting DWARF for %s failed: %v", s.Name, err) } err = dwarf.PutConcreteFunc(dwctxt, fnstate, s.Wrapper()) } else { err = dwarf.PutDefaultFunc(dwctxt, fnstate, s.Wrapper()) } if err != nil { ctxt.Diag("emitting DWARF for %s failed: %v", s.Name, err) } // Fill in the debug lines symbol. ctxt.generateDebugLinesSymbol(s, lines) } // DwarfIntConst creates a link symbol for an integer constant with the // given name, type and value. func (ctxt *Link) DwarfIntConst(name, typename string, val int64) { myimportpath := ctxt.Pkgpath if myimportpath == "" { return } s := ctxt.LookupInit(dwarf.ConstInfoPrefix+myimportpath, func(s *LSym) { s.Type = objabi.SDWARFCONST ctxt.Data = append(ctxt.Data, s) }) dwarf.PutIntConst(dwCtxt{ctxt}, s, ctxt.Lookup(dwarf.InfoPrefix+typename), myimportpath+"."+name, val) } // DwarfGlobal creates a link symbol containing a DWARF entry for // a global variable. func (ctxt *Link) DwarfGlobal(typename string, varSym *LSym) { myimportpath := ctxt.Pkgpath if myimportpath == "" || varSym.Local() { return } varname := varSym.Name dieSym := &LSym{ Type: objabi.SDWARFVAR, } varSym.NewVarInfo().dwarfInfoSym = dieSym ctxt.Data = append(ctxt.Data, dieSym) typeSym := ctxt.Lookup(dwarf.InfoPrefix + typename) dwarf.PutGlobal(dwCtxt{ctxt}, dieSym, typeSym, varSym, varname) } func (ctxt *Link) DwarfAbstractFunc(curfn Func, s *LSym) { absfn := ctxt.DwFixups.AbsFuncDwarfSym(s) if absfn.Size != 0 { ctxt.Diag("internal error: DwarfAbstractFunc double process %v", s) } if s.Func() == nil { s.NewFuncInfo() } scopes, _ := ctxt.DebugInfo(s, absfn, curfn) dwctxt := dwCtxt{ctxt} fnstate := dwarf.FnState{ Name: s.Name, Info: absfn, Absfn: absfn, StartPos: ctxt.InnermostPos(curfn.Pos()), External: !s.Static(), Scopes: scopes, UseBASEntries: ctxt.UseBASEntries, } if err := dwarf.PutAbstractFunc(dwctxt, &fnstate); err != nil { ctxt.Diag("emitting DWARF for %s failed: %v", s.Name, err) } } // This table is designed to aid in the creation of references between // DWARF subprogram DIEs. // // In most cases when one DWARF DIE has to refer to another DWARF DIE, // the target of the reference has an LSym, which makes it easy to use // the existing relocation mechanism. For DWARF inlined routine DIEs, // however, the subprogram DIE has to refer to a child // parameter/variable DIE of the abstract subprogram. This child DIE // doesn't have an LSym, and also of interest is the fact that when // DWARF generation is happening for inlined function F within caller // G, it's possible that DWARF generation hasn't happened yet for F, // so there is no way to know the offset of a child DIE within F's // abstract function. Making matters more complex, each inlined // instance of F may refer to a subset of the original F's variables // (depending on what happens with optimization, some vars may be // eliminated). // // The fixup table below helps overcome this hurdle. At the point // where a parameter/variable reference is made (via a call to // "ReferenceChildDIE"), a fixup record is generate that records // the relocation that is targeting that child variable. At a later // point when the abstract function DIE is emitted, there will be // a call to "RegisterChildDIEOffsets", at which point the offsets // needed to apply fixups are captured. Finally, once the parallel // portion of the compilation is done, fixups can actually be applied // during the "Finalize" method (this can't be done during the // parallel portion of the compile due to the possibility of data // races). // // This table is also used to record the "precursor" function node for // each function that is the target of an inline -- child DIE references // have to be made with respect to the original pre-optimization // version of the function (to allow for the fact that each inlined // body may be optimized differently). type DwarfFixupTable struct { ctxt *Link mu sync.Mutex symtab map[*LSym]int // maps abstract fn LSYM to index in svec svec []symFixups precursor map[*LSym]fnState // maps fn Lsym to precursor Node, absfn sym } type symFixups struct { fixups []relFixup doffsets []declOffset inlIndex int32 defseen bool } type declOffset struct { // Index of variable within DCL list of pre-optimization function dclIdx int32 // Offset of var's child DIE with respect to containing subprogram DIE offset int32 } type relFixup struct { refsym *LSym relidx int32 dclidx int32 } type fnState struct { // precursor function precursor Func // abstract function symbol absfn *LSym } func NewDwarfFixupTable(ctxt *Link) *DwarfFixupTable { return &DwarfFixupTable{ ctxt: ctxt, symtab: make(map[*LSym]int), precursor: make(map[*LSym]fnState), } } func (ft *DwarfFixupTable) GetPrecursorFunc(s *LSym) Func { if fnstate, found := ft.precursor[s]; found { return fnstate.precursor } return nil } func (ft *DwarfFixupTable) SetPrecursorFunc(s *LSym, fn Func) { if _, found := ft.precursor[s]; found { ft.ctxt.Diag("internal error: DwarfFixupTable.SetPrecursorFunc double call on %v", s) } // initialize abstract function symbol now. This is done here so // as to avoid data races later on during the parallel portion of // the back end. absfn := ft.ctxt.LookupDerived(s, dwarf.InfoPrefix+s.Name+dwarf.AbstractFuncSuffix) absfn.Set(AttrDuplicateOK, true) absfn.Type = objabi.SDWARFABSFCN ft.ctxt.Data = append(ft.ctxt.Data, absfn) // In the case of "late" inlining (inlines that happen during // wrapper generation as opposed to the main inlining phase) it's // possible that we didn't cache the abstract function sym for the // text symbol -- do so now if needed. See issue 38068. if fn := s.Func(); fn != nil && fn.dwarfAbsFnSym == nil { fn.dwarfAbsFnSym = absfn } ft.precursor[s] = fnState{precursor: fn, absfn: absfn} } // Make a note of a child DIE reference: relocation 'ridx' within symbol 's' // is targeting child 'c' of DIE with symbol 'tgt'. func (ft *DwarfFixupTable) ReferenceChildDIE(s *LSym, ridx int, tgt *LSym, dclidx int, inlIndex int) { // Protect against concurrent access if multiple backend workers ft.mu.Lock() defer ft.mu.Unlock() // Create entry for symbol if not already present. idx, found := ft.symtab[tgt] if !found { ft.svec = append(ft.svec, symFixups{inlIndex: int32(inlIndex)}) idx = len(ft.svec) - 1 ft.symtab[tgt] = idx } // Do we have child DIE offsets available? If so, then apply them, // otherwise create a fixup record. sf := &ft.svec[idx] if len(sf.doffsets) > 0 { found := false for _, do := range sf.doffsets { if do.dclIdx == int32(dclidx) { off := do.offset s.R[ridx].Add += int64(off) found = true break } } if !found { ft.ctxt.Diag("internal error: DwarfFixupTable.ReferenceChildDIE unable to locate child DIE offset for dclIdx=%d src=%v tgt=%v", dclidx, s, tgt) } } else { sf.fixups = append(sf.fixups, relFixup{s, int32(ridx), int32(dclidx)}) } } // Called once DWARF generation is complete for a given abstract function, // whose children might have been referenced via a call above. Stores // the offsets for any child DIEs (vars, params) so that they can be // consumed later in on DwarfFixupTable.Finalize, which applies any // outstanding fixups. func (ft *DwarfFixupTable) RegisterChildDIEOffsets(s *LSym, vars []*dwarf.Var, coffsets []int32) { // Length of these two slices should agree if len(vars) != len(coffsets) { ft.ctxt.Diag("internal error: RegisterChildDIEOffsets vars/offsets length mismatch") return } // Generate the slice of declOffset's based in vars/coffsets doffsets := make([]declOffset, len(coffsets)) for i := range coffsets { doffsets[i].dclIdx = vars[i].ChildIndex doffsets[i].offset = coffsets[i] } ft.mu.Lock() defer ft.mu.Unlock() // Store offsets for this symbol. idx, found := ft.symtab[s] if !found { sf := symFixups{inlIndex: -1, defseen: true, doffsets: doffsets} ft.svec = append(ft.svec, sf) ft.symtab[s] = len(ft.svec) - 1 } else { sf := &ft.svec[idx] sf.doffsets = doffsets sf.defseen = true } } func (ft *DwarfFixupTable) processFixups(slot int, s *LSym) { sf := &ft.svec[slot] for _, f := range sf.fixups { dfound := false for _, doffset := range sf.doffsets { if doffset.dclIdx == f.dclidx { f.refsym.R[f.relidx].Add += int64(doffset.offset) dfound = true break } } if !dfound { ft.ctxt.Diag("internal error: DwarfFixupTable has orphaned fixup on %v targeting %v relidx=%d dclidx=%d", f.refsym, s, f.relidx, f.dclidx) } } } // return the LSym corresponding to the 'abstract subprogram' DWARF // info entry for a function. func (ft *DwarfFixupTable) AbsFuncDwarfSym(fnsym *LSym) *LSym { // Protect against concurrent access if multiple backend workers ft.mu.Lock() defer ft.mu.Unlock() if fnstate, found := ft.precursor[fnsym]; found { return fnstate.absfn } ft.ctxt.Diag("internal error: AbsFuncDwarfSym requested for %v, not seen during inlining", fnsym) return nil } // Called after all functions have been compiled; the main job of this // function is to identify cases where there are outstanding fixups. // This scenario crops up when we have references to variables of an // inlined routine, but that routine is defined in some other package. // This helper walks through and locate these fixups, then invokes a // helper to create an abstract subprogram DIE for each one. func (ft *DwarfFixupTable) Finalize(myimportpath string, trace bool) { if trace { ft.ctxt.Logf("DwarfFixupTable.Finalize invoked for %s\n", myimportpath) } // Collect up the keys from the precursor map, then sort the // resulting list (don't want to rely on map ordering here). fns := make([]*LSym, len(ft.precursor)) idx := 0 for fn := range ft.precursor { fns[idx] = fn idx++ } sort.Sort(BySymName(fns)) // Should not be called during parallel portion of compilation. if ft.ctxt.InParallel { ft.ctxt.Diag("internal error: DwarfFixupTable.Finalize call during parallel backend") } // Generate any missing abstract functions. for _, s := range fns { absfn := ft.AbsFuncDwarfSym(s) slot, found := ft.symtab[absfn] if !found || !ft.svec[slot].defseen { ft.ctxt.GenAbstractFunc(s) } } // Apply fixups. for _, s := range fns { absfn := ft.AbsFuncDwarfSym(s) slot, found := ft.symtab[absfn] if !found { ft.ctxt.Diag("internal error: DwarfFixupTable.Finalize orphan abstract function for %v", s) } else { ft.processFixups(slot, s) } } } type BySymName []*LSym func (s BySymName) Len() int { return len(s) } func (s BySymName) Less(i, j int) bool { return s[i].Name < s[j].Name } func (s BySymName) Swap(i, j int) { s[i], s[j] = s[j], s[i] }