// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssa // phiopt eliminates boolean Phis based on the previous if. // // Main use case is to transform: // // x := false // if b { // x = true // } // // into x = b. // // In SSA code this appears as // // b0 // If b -> b1 b2 // b1 // Plain -> b2 // b2 // x = (OpPhi (ConstBool [true]) (ConstBool [false])) // // In this case we can replace x with a copy of b. func phiopt(f *Func) { sdom := f.Sdom() for _, b := range f.Blocks { if len(b.Preds) != 2 || len(b.Values) == 0 { // TODO: handle more than 2 predecessors, e.g. a || b || c. continue } pb0, b0 := b, b.Preds[0].b for len(b0.Succs) == 1 && len(b0.Preds) == 1 { pb0, b0 = b0, b0.Preds[0].b } if b0.Kind != BlockIf { continue } pb1, b1 := b, b.Preds[1].b for len(b1.Succs) == 1 && len(b1.Preds) == 1 { pb1, b1 = b1, b1.Preds[0].b } if b1 != b0 { continue } // b0 is the if block giving the boolean value. // reverse is the predecessor from which the truth value comes. var reverse int if b0.Succs[0].b == pb0 && b0.Succs[1].b == pb1 { reverse = 0 } else if b0.Succs[0].b == pb1 && b0.Succs[1].b == pb0 { reverse = 1 } else { b.Fatalf("invalid predecessors\n") } for _, v := range b.Values { if v.Op != OpPhi { continue } // Look for conversions from bool to 0/1. if v.Type.IsInteger() { phioptint(v, b0, reverse) } if !v.Type.IsBoolean() { continue } // Replaces // if a { x = true } else { x = false } with x = a // and // if a { x = false } else { x = true } with x = !a if v.Args[0].Op == OpConstBool && v.Args[1].Op == OpConstBool { if v.Args[reverse].AuxInt != v.Args[1-reverse].AuxInt { ops := [2]Op{OpNot, OpCopy} v.reset(ops[v.Args[reverse].AuxInt]) v.AddArg(b0.Controls[0]) if f.pass.debug > 0 { f.Warnl(b.Pos, "converted OpPhi to %v", v.Op) } continue } } // Replaces // if a { x = true } else { x = value } with x = a || value. // Requires that value dominates x, meaning that regardless of a, // value is always computed. This guarantees that the side effects // of value are not seen if a is false. if v.Args[reverse].Op == OpConstBool && v.Args[reverse].AuxInt == 1 { if tmp := v.Args[1-reverse]; sdom.IsAncestorEq(tmp.Block, b) { v.reset(OpOrB) v.SetArgs2(b0.Controls[0], tmp) if f.pass.debug > 0 { f.Warnl(b.Pos, "converted OpPhi to %v", v.Op) } continue } } // Replaces // if a { x = value } else { x = false } with x = a && value. // Requires that value dominates x, meaning that regardless of a, // value is always computed. This guarantees that the side effects // of value are not seen if a is false. if v.Args[1-reverse].Op == OpConstBool && v.Args[1-reverse].AuxInt == 0 { if tmp := v.Args[reverse]; sdom.IsAncestorEq(tmp.Block, b) { v.reset(OpAndB) v.SetArgs2(b0.Controls[0], tmp) if f.pass.debug > 0 { f.Warnl(b.Pos, "converted OpPhi to %v", v.Op) } continue } } } } // strengthen phi optimization. // Main use case is to transform: // x := false // if c { // x = true // ... // } // into // x := c // if x { ... } // // For example, in SSA code a case appears as // b0 // If c -> b, sb0 // sb0 // If d -> sd0, sd1 // sd1 // ... // sd0 // Plain -> b // b // x = (OpPhi (ConstBool [true]) (ConstBool [false])) // // In this case we can also replace x with a copy of c. // // The optimization idea: // 1. block b has a phi value x, x = OpPhi (ConstBool [true]) (ConstBool [false]), // and len(b.Preds) is equal to 2. // 2. find the common dominator(b0) of the predecessors(pb0, pb1) of block b, and the // dominator(b0) is a If block. // Special case: one of the predecessors(pb0 or pb1) is the dominator(b0). // 3. the successors(sb0, sb1) of the dominator need to dominate the predecessors(pb0, pb1) // of block b respectively. // 4. replace this boolean Phi based on dominator block. // // b0(pb0) b0(pb1) b0 // | \ / | / \ // | sb1 sb0 | sb0 sb1 // | ... ... | ... ... // | pb1 pb0 | pb0 pb1 // | / \ | \ / // b b b // var lca *lcaRange for _, b := range f.Blocks { if len(b.Preds) != 2 || len(b.Values) == 0 { // TODO: handle more than 2 predecessors, e.g. a || b || c. continue } for _, v := range b.Values { // find a phi value v = OpPhi (ConstBool [true]) (ConstBool [false]). // TODO: v = OpPhi (ConstBool [true]) (Arg {value}) if v.Op != OpPhi { continue } if v.Args[0].Op != OpConstBool || v.Args[1].Op != OpConstBool { continue } if v.Args[0].AuxInt == v.Args[1].AuxInt { continue } pb0 := b.Preds[0].b pb1 := b.Preds[1].b if pb0.Kind == BlockIf && pb0 == sdom.Parent(b) { // special case: pb0 is the dominator block b0. // b0(pb0) // | \ // | sb1 // | ... // | pb1 // | / // b // if another successor sb1 of b0(pb0) dominates pb1, do replace. ei := b.Preds[0].i sb1 := pb0.Succs[1-ei].b if sdom.IsAncestorEq(sb1, pb1) { convertPhi(pb0, v, ei) break } } else if pb1.Kind == BlockIf && pb1 == sdom.Parent(b) { // special case: pb1 is the dominator block b0. // b0(pb1) // / | // sb0 | // ... | // pb0 | // \ | // b // if another successor sb0 of b0(pb0) dominates pb0, do replace. ei := b.Preds[1].i sb0 := pb1.Succs[1-ei].b if sdom.IsAncestorEq(sb0, pb0) { convertPhi(pb1, v, 1-ei) break } } else { // b0 // / \ // sb0 sb1 // ... ... // pb0 pb1 // \ / // b // // Build data structure for fast least-common-ancestor queries. if lca == nil { lca = makeLCArange(f) } b0 := lca.find(pb0, pb1) if b0.Kind != BlockIf { break } sb0 := b0.Succs[0].b sb1 := b0.Succs[1].b var reverse int if sdom.IsAncestorEq(sb0, pb0) && sdom.IsAncestorEq(sb1, pb1) { reverse = 0 } else if sdom.IsAncestorEq(sb1, pb0) && sdom.IsAncestorEq(sb0, pb1) { reverse = 1 } else { break } if len(sb0.Preds) != 1 || len(sb1.Preds) != 1 { // we can not replace phi value x in the following case. // if gp == nil || sp < lo { x = true} // if a || b { x = true } // so the if statement can only have one condition. break } convertPhi(b0, v, reverse) } } } } func phioptint(v *Value, b0 *Block, reverse int) { a0 := v.Args[0] a1 := v.Args[1] if a0.Op != a1.Op { return } switch a0.Op { case OpConst8, OpConst16, OpConst32, OpConst64: default: return } negate := false switch { case a0.AuxInt == 0 && a1.AuxInt == 1: negate = true case a0.AuxInt == 1 && a1.AuxInt == 0: default: return } if reverse == 1 { negate = !negate } a := b0.Controls[0] if negate { a = v.Block.NewValue1(v.Pos, OpNot, a.Type, a) } v.AddArg(a) cvt := v.Block.NewValue1(v.Pos, OpCvtBoolToUint8, v.Block.Func.Config.Types.UInt8, a) switch v.Type.Size() { case 1: v.reset(OpCopy) case 2: v.reset(OpZeroExt8to16) case 4: v.reset(OpZeroExt8to32) case 8: v.reset(OpZeroExt8to64) default: v.Fatalf("bad int size %d", v.Type.Size()) } v.AddArg(cvt) f := b0.Func if f.pass.debug > 0 { f.Warnl(v.Block.Pos, "converted OpPhi bool -> int%d", v.Type.Size()*8) } } // b is the If block giving the boolean value. // v is the phi value v = (OpPhi (ConstBool [true]) (ConstBool [false])). // reverse is the predecessor from which the truth value comes. func convertPhi(b *Block, v *Value, reverse int) { f := b.Func ops := [2]Op{OpNot, OpCopy} v.reset(ops[v.Args[reverse].AuxInt]) v.AddArg(b.Controls[0]) if f.pass.debug > 0 { f.Warnl(b.Pos, "converted OpPhi to %v", v.Op) } }