// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Simplifications that apply to all backend architectures. As an example, this // Go source code // // y := 0 * x // // can be translated into y := 0 without losing any information, which saves a // pointless multiplication instruction. Other .rules files in this directory // (for example AMD64.rules) contain rules specific to the architecture in the // filename. The rules here apply to every architecture. // // The code for parsing this file lives in rulegen.go; this file generates // ssa/rewritegeneric.go. // values are specified using the following format: // (op [auxint] {aux} arg0 arg1 ...) // the type, aux, and auxint fields are optional // on the matching side // - the type, aux, and auxint fields must match if they are specified. // - the first occurrence of a variable defines that variable. Subsequent // uses must match (be == to) the first use. // - v is defined to be the value matched. // - an additional conditional can be provided after the match pattern with "&&". // on the generated side // - the type of the top-level expression is the same as the one on the left-hand side. // - the type of any subexpressions must be specified explicitly (or // be specified in the op's type field). // - auxint will be 0 if not specified. // - aux will be nil if not specified. // blocks are specified using the following format: // (kind controlvalue succ0 succ1 ...) // controlvalue must be "nil" or a value expression // succ* fields must be variables // For now, the generated successors must be a permutation of the matched successors. // constant folding (Trunc16to8 (Const16 [c])) => (Const8 [int8(c)]) (Trunc32to8 (Const32 [c])) => (Const8 [int8(c)]) (Trunc32to16 (Const32 [c])) => (Const16 [int16(c)]) (Trunc64to8 (Const64 [c])) => (Const8 [int8(c)]) (Trunc64to16 (Const64 [c])) => (Const16 [int16(c)]) (Trunc64to32 (Const64 [c])) => (Const32 [int32(c)]) (Cvt64Fto32F (Const64F [c])) => (Const32F [float32(c)]) (Cvt32Fto64F (Const32F [c])) => (Const64F [float64(c)]) (Cvt32to32F (Const32 [c])) => (Const32F [float32(c)]) (Cvt32to64F (Const32 [c])) => (Const64F [float64(c)]) (Cvt64to32F (Const64 [c])) => (Const32F [float32(c)]) (Cvt64to64F (Const64 [c])) => (Const64F [float64(c)]) (Cvt32Fto32 (Const32F [c])) => (Const32 [int32(c)]) (Cvt32Fto64 (Const32F [c])) => (Const64 [int64(c)]) (Cvt64Fto32 (Const64F [c])) => (Const32 [int32(c)]) (Cvt64Fto64 (Const64F [c])) => (Const64 [int64(c)]) (Round32F x:(Const32F)) => x (Round64F x:(Const64F)) => x (CvtBoolToUint8 (ConstBool [false])) => (Const8 [0]) (CvtBoolToUint8 (ConstBool [true])) => (Const8 [1]) (Trunc16to8 (ZeroExt8to16 x)) => x (Trunc32to8 (ZeroExt8to32 x)) => x (Trunc32to16 (ZeroExt8to32 x)) => (ZeroExt8to16 x) (Trunc32to16 (ZeroExt16to32 x)) => x (Trunc64to8 (ZeroExt8to64 x)) => x (Trunc64to16 (ZeroExt8to64 x)) => (ZeroExt8to16 x) (Trunc64to16 (ZeroExt16to64 x)) => x (Trunc64to32 (ZeroExt8to64 x)) => (ZeroExt8to32 x) (Trunc64to32 (ZeroExt16to64 x)) => (ZeroExt16to32 x) (Trunc64to32 (ZeroExt32to64 x)) => x (Trunc16to8 (SignExt8to16 x)) => x (Trunc32to8 (SignExt8to32 x)) => x (Trunc32to16 (SignExt8to32 x)) => (SignExt8to16 x) (Trunc32to16 (SignExt16to32 x)) => x (Trunc64to8 (SignExt8to64 x)) => x (Trunc64to16 (SignExt8to64 x)) => (SignExt8to16 x) (Trunc64to16 (SignExt16to64 x)) => x (Trunc64to32 (SignExt8to64 x)) => (SignExt8to32 x) (Trunc64to32 (SignExt16to64 x)) => (SignExt16to32 x) (Trunc64to32 (SignExt32to64 x)) => x (ZeroExt8to16 (Const8 [c])) => (Const16 [int16( uint8(c))]) (ZeroExt8to32 (Const8 [c])) => (Const32 [int32( uint8(c))]) (ZeroExt8to64 (Const8 [c])) => (Const64 [int64( uint8(c))]) (ZeroExt16to32 (Const16 [c])) => (Const32 [int32(uint16(c))]) (ZeroExt16to64 (Const16 [c])) => (Const64 [int64(uint16(c))]) (ZeroExt32to64 (Const32 [c])) => (Const64 [int64(uint32(c))]) (SignExt8to16 (Const8 [c])) => (Const16 [int16(c)]) (SignExt8to32 (Const8 [c])) => (Const32 [int32(c)]) (SignExt8to64 (Const8 [c])) => (Const64 [int64(c)]) (SignExt16to32 (Const16 [c])) => (Const32 [int32(c)]) (SignExt16to64 (Const16 [c])) => (Const64 [int64(c)]) (SignExt32to64 (Const32 [c])) => (Const64 [int64(c)]) (Neg8 (Const8 [c])) => (Const8 [-c]) (Neg16 (Const16 [c])) => (Const16 [-c]) (Neg32 (Const32 [c])) => (Const32 [-c]) (Neg64 (Const64 [c])) => (Const64 [-c]) (Neg32F (Const32F [c])) && c != 0 => (Const32F [-c]) (Neg64F (Const64F [c])) && c != 0 => (Const64F [-c]) (Add8 (Const8 [c]) (Const8 [d])) => (Const8 [c+d]) (Add16 (Const16 [c]) (Const16 [d])) => (Const16 [c+d]) (Add32 (Const32 [c]) (Const32 [d])) => (Const32 [c+d]) (Add64 (Const64 [c]) (Const64 [d])) => (Const64 [c+d]) (Add32F (Const32F [c]) (Const32F [d])) && c+d == c+d => (Const32F [c+d]) (Add64F (Const64F [c]) (Const64F [d])) && c+d == c+d => (Const64F [c+d]) (AddPtr x (Const64 [c])) => (OffPtr x [c]) (AddPtr x (Const32 [c])) => (OffPtr x [int64(c)]) (Sub8 (Const8 [c]) (Const8 [d])) => (Const8 [c-d]) (Sub16 (Const16 [c]) (Const16 [d])) => (Const16 [c-d]) (Sub32 (Const32 [c]) (Const32 [d])) => (Const32 [c-d]) (Sub64 (Const64 [c]) (Const64 [d])) => (Const64 [c-d]) (Sub32F (Const32F [c]) (Const32F [d])) && c-d == c-d => (Const32F [c-d]) (Sub64F (Const64F [c]) (Const64F [d])) && c-d == c-d => (Const64F [c-d]) (Mul8 (Const8 [c]) (Const8 [d])) => (Const8 [c*d]) (Mul16 (Const16 [c]) (Const16 [d])) => (Const16 [c*d]) (Mul32 (Const32 [c]) (Const32 [d])) => (Const32 [c*d]) (Mul64 (Const64 [c]) (Const64 [d])) => (Const64 [c*d]) (Mul32F (Const32F [c]) (Const32F [d])) && c*d == c*d => (Const32F [c*d]) (Mul64F (Const64F [c]) (Const64F [d])) && c*d == c*d => (Const64F [c*d]) (And8 (Const8 [c]) (Const8 [d])) => (Const8 [c&d]) (And16 (Const16 [c]) (Const16 [d])) => (Const16 [c&d]) (And32 (Const32 [c]) (Const32 [d])) => (Const32 [c&d]) (And64 (Const64 [c]) (Const64 [d])) => (Const64 [c&d]) (Or8 (Const8 [c]) (Const8 [d])) => (Const8 [c|d]) (Or16 (Const16 [c]) (Const16 [d])) => (Const16 [c|d]) (Or32 (Const32 [c]) (Const32 [d])) => (Const32 [c|d]) (Or64 (Const64 [c]) (Const64 [d])) => (Const64 [c|d]) (Xor8 (Const8 [c]) (Const8 [d])) => (Const8 [c^d]) (Xor16 (Const16 [c]) (Const16 [d])) => (Const16 [c^d]) (Xor32 (Const32 [c]) (Const32 [d])) => (Const32 [c^d]) (Xor64 (Const64 [c]) (Const64 [d])) => (Const64 [c^d]) (Ctz64 (Const64 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz64(c))]) (Ctz32 (Const32 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz32(c))]) (Ctz16 (Const16 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz16(c))]) (Ctz8 (Const8 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz8(c))]) (Ctz64 (Const64 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz64(c))]) (Ctz32 (Const32 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz32(c))]) (Ctz16 (Const16 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz16(c))]) (Ctz8 (Const8 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz8(c))]) (Div8 (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [c/d]) (Div16 (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [c/d]) (Div32 (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [c/d]) (Div64 (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [c/d]) (Div8u (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [int8(uint8(c)/uint8(d))]) (Div16u (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [int16(uint16(c)/uint16(d))]) (Div32u (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [int32(uint32(c)/uint32(d))]) (Div64u (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [int64(uint64(c)/uint64(d))]) (Div32F (Const32F [c]) (Const32F [d])) && c/d == c/d => (Const32F [c/d]) (Div64F (Const64F [c]) (Const64F [d])) && c/d == c/d => (Const64F [c/d]) (Select0 (Div128u (Const64 [0]) lo y)) => (Div64u lo y) (Select1 (Div128u (Const64 [0]) lo y)) => (Mod64u lo y) (Not (ConstBool [c])) => (ConstBool [!c]) (Floor (Const64F [c])) => (Const64F [math.Floor(c)]) (Ceil (Const64F [c])) => (Const64F [math.Ceil(c)]) (Trunc (Const64F [c])) => (Const64F [math.Trunc(c)]) (RoundToEven (Const64F [c])) => (Const64F [math.RoundToEven(c)]) // Convert x * 1 to x. (Mul(8|16|32|64) (Const(8|16|32|64) [1]) x) => x (Select0 (Mul(32|64)uover (Const(32|64) [1]) x)) => x (Select1 (Mul(32|64)uover (Const(32|64) [1]) x)) => (ConstBool [false]) // Convert x * -1 to -x. (Mul(8|16|32|64) (Const(8|16|32|64) [-1]) x) => (Neg(8|16|32|64) x) // DeMorgan's Laws (And(8|16|32|64) (Com(8|16|32|64) x) (Com(8|16|32|64) y)) => (Com(8|16|32|64) (Or(8|16|32|64) x y)) (Or(8|16|32|64) (Com(8|16|32|64) x) (Com(8|16|32|64) y)) => (Com(8|16|32|64) (And(8|16|32|64) x y)) // Convert multiplication by a power of two to a shift. (Mul8 n (Const8 [c])) && isPowerOfTwo8(c) => (Lsh8x64 n (Const64 [log8(c)])) (Mul16 n (Const16 [c])) && isPowerOfTwo16(c) => (Lsh16x64 n (Const64 [log16(c)])) (Mul32 n (Const32 [c])) && isPowerOfTwo32(c) => (Lsh32x64 n (Const64 [log32(c)])) (Mul64 n (Const64 [c])) && isPowerOfTwo64(c) => (Lsh64x64 n (Const64 [log64(c)])) (Mul8 n (Const8 [c])) && t.IsSigned() && isPowerOfTwo8(-c) => (Neg8 (Lsh8x64 n (Const64 [log8(-c)]))) (Mul16 n (Const16 [c])) && t.IsSigned() && isPowerOfTwo16(-c) => (Neg16 (Lsh16x64 n (Const64 [log16(-c)]))) (Mul32 n (Const32 [c])) && t.IsSigned() && isPowerOfTwo32(-c) => (Neg32 (Lsh32x64 n (Const64 [log32(-c)]))) (Mul64 n (Const64 [c])) && t.IsSigned() && isPowerOfTwo64(-c) => (Neg64 (Lsh64x64 n (Const64 [log64(-c)]))) (Mod8 (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [c % d]) (Mod16 (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [c % d]) (Mod32 (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [c % d]) (Mod64 (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [c % d]) (Mod8u (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [int8(uint8(c) % uint8(d))]) (Mod16u (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [int16(uint16(c) % uint16(d))]) (Mod32u (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [int32(uint32(c) % uint32(d))]) (Mod64u (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [int64(uint64(c) % uint64(d))]) (Lsh64x64 (Const64 [c]) (Const64 [d])) => (Const64 [c << uint64(d)]) (Rsh64x64 (Const64 [c]) (Const64 [d])) => (Const64 [c >> uint64(d)]) (Rsh64Ux64 (Const64 [c]) (Const64 [d])) => (Const64 [int64(uint64(c) >> uint64(d))]) (Lsh32x64 (Const32 [c]) (Const64 [d])) => (Const32 [c << uint64(d)]) (Rsh32x64 (Const32 [c]) (Const64 [d])) => (Const32 [c >> uint64(d)]) (Rsh32Ux64 (Const32 [c]) (Const64 [d])) => (Const32 [int32(uint32(c) >> uint64(d))]) (Lsh16x64 (Const16 [c]) (Const64 [d])) => (Const16 [c << uint64(d)]) (Rsh16x64 (Const16 [c]) (Const64 [d])) => (Const16 [c >> uint64(d)]) (Rsh16Ux64 (Const16 [c]) (Const64 [d])) => (Const16 [int16(uint16(c) >> uint64(d))]) (Lsh8x64 (Const8 [c]) (Const64 [d])) => (Const8 [c << uint64(d)]) (Rsh8x64 (Const8 [c]) (Const64 [d])) => (Const8 [c >> uint64(d)]) (Rsh8Ux64 (Const8 [c]) (Const64 [d])) => (Const8 [int8(uint8(c) >> uint64(d))]) // Fold IsInBounds when the range of the index cannot exceed the limit. (IsInBounds (ZeroExt8to32 _) (Const32 [c])) && (1 << 8) <= c => (ConstBool [true]) (IsInBounds (ZeroExt8to64 _) (Const64 [c])) && (1 << 8) <= c => (ConstBool [true]) (IsInBounds (ZeroExt16to32 _) (Const32 [c])) && (1 << 16) <= c => (ConstBool [true]) (IsInBounds (ZeroExt16to64 _) (Const64 [c])) && (1 << 16) <= c => (ConstBool [true]) (IsInBounds x x) => (ConstBool [false]) (IsInBounds (And8 (Const8 [c]) _) (Const8 [d])) && 0 <= c && c < d => (ConstBool [true]) (IsInBounds (ZeroExt8to16 (And8 (Const8 [c]) _)) (Const16 [d])) && 0 <= c && int16(c) < d => (ConstBool [true]) (IsInBounds (ZeroExt8to32 (And8 (Const8 [c]) _)) (Const32 [d])) && 0 <= c && int32(c) < d => (ConstBool [true]) (IsInBounds (ZeroExt8to64 (And8 (Const8 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true]) (IsInBounds (And16 (Const16 [c]) _) (Const16 [d])) && 0 <= c && c < d => (ConstBool [true]) (IsInBounds (ZeroExt16to32 (And16 (Const16 [c]) _)) (Const32 [d])) && 0 <= c && int32(c) < d => (ConstBool [true]) (IsInBounds (ZeroExt16to64 (And16 (Const16 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true]) (IsInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c < d => (ConstBool [true]) (IsInBounds (ZeroExt32to64 (And32 (Const32 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true]) (IsInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c < d => (ConstBool [true]) (IsInBounds (Const32 [c]) (Const32 [d])) => (ConstBool [0 <= c && c < d]) (IsInBounds (Const64 [c]) (Const64 [d])) => (ConstBool [0 <= c && c < d]) // (Mod64u x y) is always between 0 (inclusive) and y (exclusive). (IsInBounds (Mod32u _ y) y) => (ConstBool [true]) (IsInBounds (Mod64u _ y) y) => (ConstBool [true]) // Right shifting an unsigned number limits its value. (IsInBounds (ZeroExt8to64 (Rsh8Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 8 && 1< (ConstBool [true]) (IsInBounds (ZeroExt8to32 (Rsh8Ux64 _ (Const64 [c]))) (Const32 [d])) && 0 < c && c < 8 && 1< (ConstBool [true]) (IsInBounds (ZeroExt8to16 (Rsh8Ux64 _ (Const64 [c]))) (Const16 [d])) && 0 < c && c < 8 && 1< (ConstBool [true]) (IsInBounds (Rsh8Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 8 && 1< (ConstBool [true]) (IsInBounds (ZeroExt16to64 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1< (ConstBool [true]) (IsInBounds (ZeroExt16to32 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1< (ConstBool [true]) (IsInBounds (Rsh16Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 16 && 1< (ConstBool [true]) (IsInBounds (ZeroExt32to64 (Rsh32Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 32 && 1< (ConstBool [true]) (IsInBounds (Rsh32Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 32 && 1< (ConstBool [true]) (IsInBounds (Rsh64Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 64 && 1< (ConstBool [true]) (IsSliceInBounds x x) => (ConstBool [true]) (IsSliceInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c <= d => (ConstBool [true]) (IsSliceInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c <= d => (ConstBool [true]) (IsSliceInBounds (Const32 [0]) _) => (ConstBool [true]) (IsSliceInBounds (Const64 [0]) _) => (ConstBool [true]) (IsSliceInBounds (Const32 [c]) (Const32 [d])) => (ConstBool [0 <= c && c <= d]) (IsSliceInBounds (Const64 [c]) (Const64 [d])) => (ConstBool [0 <= c && c <= d]) (IsSliceInBounds (SliceLen x) (SliceCap x)) => (ConstBool [true]) (Eq(64|32|16|8) x x) => (ConstBool [true]) (EqB (ConstBool [c]) (ConstBool [d])) => (ConstBool [c == d]) (EqB (ConstBool [false]) x) => (Not x) (EqB (ConstBool [true]) x) => x (Neq(64|32|16|8) x x) => (ConstBool [false]) (NeqB (ConstBool [c]) (ConstBool [d])) => (ConstBool [c != d]) (NeqB (ConstBool [false]) x) => x (NeqB (ConstBool [true]) x) => (Not x) (NeqB (Not x) (Not y)) => (NeqB x y) (Eq64 (Const64 [c]) (Add64 (Const64 [d]) x)) => (Eq64 (Const64 [c-d]) x) (Eq32 (Const32 [c]) (Add32 (Const32 [d]) x)) => (Eq32 (Const32 [c-d]) x) (Eq16 (Const16 [c]) (Add16 (Const16 [d]) x)) => (Eq16 (Const16 [c-d]) x) (Eq8 (Const8 [c]) (Add8 (Const8 [d]) x)) => (Eq8 (Const8 [c-d]) x) (Neq64 (Const64 [c]) (Add64 (Const64 [d]) x)) => (Neq64 (Const64 [c-d]) x) (Neq32 (Const32 [c]) (Add32 (Const32 [d]) x)) => (Neq32 (Const32 [c-d]) x) (Neq16 (Const16 [c]) (Add16 (Const16 [d]) x)) => (Neq16 (Const16 [c-d]) x) (Neq8 (Const8 [c]) (Add8 (Const8 [d]) x)) => (Neq8 (Const8 [c-d]) x) // signed integer range: ( c <= x && x (<|<=) d ) -> ( unsigned(x-c) (<|<=) unsigned(d-c) ) (AndB (Leq64 (Const64 [c]) x) ((Less|Leq)64 x (Const64 [d]))) && d >= c => ((Less|Leq)64U (Sub64 x (Const64 [c])) (Const64 [d-c])) (AndB (Leq32 (Const32 [c]) x) ((Less|Leq)32 x (Const32 [d]))) && d >= c => ((Less|Leq)32U (Sub32 x (Const32 [c])) (Const32 [d-c])) (AndB (Leq16 (Const16 [c]) x) ((Less|Leq)16 x (Const16 [d]))) && d >= c => ((Less|Leq)16U (Sub16 x (Const16 [c])) (Const16 [d-c])) (AndB (Leq8 (Const8 [c]) x) ((Less|Leq)8 x (Const8 [d]))) && d >= c => ((Less|Leq)8U (Sub8 x (Const8 [c])) (Const8 [d-c])) // signed integer range: ( c < x && x (<|<=) d ) -> ( unsigned(x-(c+1)) (<|<=) unsigned(d-(c+1)) ) (AndB (Less64 (Const64 [c]) x) ((Less|Leq)64 x (Const64 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)64U (Sub64 x (Const64 [c+1])) (Const64 [d-c-1])) (AndB (Less32 (Const32 [c]) x) ((Less|Leq)32 x (Const32 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)32U (Sub32 x (Const32 [c+1])) (Const32 [d-c-1])) (AndB (Less16 (Const16 [c]) x) ((Less|Leq)16 x (Const16 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)16U (Sub16 x (Const16 [c+1])) (Const16 [d-c-1])) (AndB (Less8 (Const8 [c]) x) ((Less|Leq)8 x (Const8 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)8U (Sub8 x (Const8 [c+1])) (Const8 [d-c-1])) // unsigned integer range: ( c <= x && x (<|<=) d ) -> ( x-c (<|<=) d-c ) (AndB (Leq64U (Const64 [c]) x) ((Less|Leq)64U x (Const64 [d]))) && uint64(d) >= uint64(c) => ((Less|Leq)64U (Sub64 x (Const64 [c])) (Const64 [d-c])) (AndB (Leq32U (Const32 [c]) x) ((Less|Leq)32U x (Const32 [d]))) && uint32(d) >= uint32(c) => ((Less|Leq)32U (Sub32 x (Const32 [c])) (Const32 [d-c])) (AndB (Leq16U (Const16 [c]) x) ((Less|Leq)16U x (Const16 [d]))) && uint16(d) >= uint16(c) => ((Less|Leq)16U (Sub16 x (Const16 [c])) (Const16 [d-c])) (AndB (Leq8U (Const8 [c]) x) ((Less|Leq)8U x (Const8 [d]))) && uint8(d) >= uint8(c) => ((Less|Leq)8U (Sub8 x (Const8 [c])) (Const8 [d-c])) // unsigned integer range: ( c < x && x (<|<=) d ) -> ( x-(c+1) (<|<=) d-(c+1) ) (AndB (Less64U (Const64 [c]) x) ((Less|Leq)64U x (Const64 [d]))) && uint64(d) >= uint64(c+1) && uint64(c+1) > uint64(c) => ((Less|Leq)64U (Sub64 x (Const64 [c+1])) (Const64 [d-c-1])) (AndB (Less32U (Const32 [c]) x) ((Less|Leq)32U x (Const32 [d]))) && uint32(d) >= uint32(c+1) && uint32(c+1) > uint32(c) => ((Less|Leq)32U (Sub32 x (Const32 [c+1])) (Const32 [d-c-1])) (AndB (Less16U (Const16 [c]) x) ((Less|Leq)16U x (Const16 [d]))) && uint16(d) >= uint16(c+1) && uint16(c+1) > uint16(c) => ((Less|Leq)16U (Sub16 x (Const16 [c+1])) (Const16 [d-c-1])) (AndB (Less8U (Const8 [c]) x) ((Less|Leq)8U x (Const8 [d]))) && uint8(d) >= uint8(c+1) && uint8(c+1) > uint8(c) => ((Less|Leq)8U (Sub8 x (Const8 [c+1])) (Const8 [d-c-1])) // signed integer range: ( c (<|<=) x || x < d ) -> ( unsigned(c-d) (<|<=) unsigned(x-d) ) (OrB ((Less|Leq)64 (Const64 [c]) x) (Less64 x (Const64 [d]))) && c >= d => ((Less|Leq)64U (Const64 [c-d]) (Sub64 x (Const64 [d]))) (OrB ((Less|Leq)32 (Const32 [c]) x) (Less32 x (Const32 [d]))) && c >= d => ((Less|Leq)32U (Const32 [c-d]) (Sub32 x (Const32 [d]))) (OrB ((Less|Leq)16 (Const16 [c]) x) (Less16 x (Const16 [d]))) && c >= d => ((Less|Leq)16U (Const16 [c-d]) (Sub16 x (Const16 [d]))) (OrB ((Less|Leq)8 (Const8 [c]) x) (Less8 x (Const8 [d]))) && c >= d => ((Less|Leq)8U (Const8 [c-d]) (Sub8 x (Const8 [d]))) // signed integer range: ( c (<|<=) x || x <= d ) -> ( unsigned(c-(d+1)) (<|<=) unsigned(x-(d+1)) ) (OrB ((Less|Leq)64 (Const64 [c]) x) (Leq64 x (Const64 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)64U (Const64 [c-d-1]) (Sub64 x (Const64 [d+1]))) (OrB ((Less|Leq)32 (Const32 [c]) x) (Leq32 x (Const32 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)32U (Const32 [c-d-1]) (Sub32 x (Const32 [d+1]))) (OrB ((Less|Leq)16 (Const16 [c]) x) (Leq16 x (Const16 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)16U (Const16 [c-d-1]) (Sub16 x (Const16 [d+1]))) (OrB ((Less|Leq)8 (Const8 [c]) x) (Leq8 x (Const8 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)8U (Const8 [c-d-1]) (Sub8 x (Const8 [d+1]))) // unsigned integer range: ( c (<|<=) x || x < d ) -> ( c-d (<|<=) x-d ) (OrB ((Less|Leq)64U (Const64 [c]) x) (Less64U x (Const64 [d]))) && uint64(c) >= uint64(d) => ((Less|Leq)64U (Const64 [c-d]) (Sub64 x (Const64 [d]))) (OrB ((Less|Leq)32U (Const32 [c]) x) (Less32U x (Const32 [d]))) && uint32(c) >= uint32(d) => ((Less|Leq)32U (Const32 [c-d]) (Sub32 x (Const32 [d]))) (OrB ((Less|Leq)16U (Const16 [c]) x) (Less16U x (Const16 [d]))) && uint16(c) >= uint16(d) => ((Less|Leq)16U (Const16 [c-d]) (Sub16 x (Const16 [d]))) (OrB ((Less|Leq)8U (Const8 [c]) x) (Less8U x (Const8 [d]))) && uint8(c) >= uint8(d) => ((Less|Leq)8U (Const8 [c-d]) (Sub8 x (Const8 [d]))) // unsigned integer range: ( c (<|<=) x || x <= d ) -> ( c-(d+1) (<|<=) x-(d+1) ) (OrB ((Less|Leq)64U (Const64 [c]) x) (Leq64U x (Const64 [d]))) && uint64(c) >= uint64(d+1) && uint64(d+1) > uint64(d) => ((Less|Leq)64U (Const64 [c-d-1]) (Sub64 x (Const64 [d+1]))) (OrB ((Less|Leq)32U (Const32 [c]) x) (Leq32U x (Const32 [d]))) && uint32(c) >= uint32(d+1) && uint32(d+1) > uint32(d) => ((Less|Leq)32U (Const32 [c-d-1]) (Sub32 x (Const32 [d+1]))) (OrB ((Less|Leq)16U (Const16 [c]) x) (Leq16U x (Const16 [d]))) && uint16(c) >= uint16(d+1) && uint16(d+1) > uint16(d) => ((Less|Leq)16U (Const16 [c-d-1]) (Sub16 x (Const16 [d+1]))) (OrB ((Less|Leq)8U (Const8 [c]) x) (Leq8U x (Const8 [d]))) && uint8(c) >= uint8(d+1) && uint8(d+1) > uint8(d) => ((Less|Leq)8U (Const8 [c-d-1]) (Sub8 x (Const8 [d+1]))) // Canonicalize x-const to x+(-const) (Sub64 x (Const64 [c])) && x.Op != OpConst64 => (Add64 (Const64 [-c]) x) (Sub32 x (Const32 [c])) && x.Op != OpConst32 => (Add32 (Const32 [-c]) x) (Sub16 x (Const16 [c])) && x.Op != OpConst16 => (Add16 (Const16 [-c]) x) (Sub8 x (Const8 [c])) && x.Op != OpConst8 => (Add8 (Const8 [-c]) x) // fold negation into comparison operators (Not (Eq(64|32|16|8|B|Ptr|64F|32F) x y)) => (Neq(64|32|16|8|B|Ptr|64F|32F) x y) (Not (Neq(64|32|16|8|B|Ptr|64F|32F) x y)) => (Eq(64|32|16|8|B|Ptr|64F|32F) x y) (Not (Less(64|32|16|8) x y)) => (Leq(64|32|16|8) y x) (Not (Less(64|32|16|8)U x y)) => (Leq(64|32|16|8)U y x) (Not (Leq(64|32|16|8) x y)) => (Less(64|32|16|8) y x) (Not (Leq(64|32|16|8)U x y)) => (Less(64|32|16|8)U y x) // Distribute multiplication c * (d+x) -> c*d + c*x. Useful for: // a[i].b = ...; a[i+1].b = ... (Mul64 (Const64 [c]) (Add64 (Const64 [d]) x)) => (Add64 (Const64 [c*d]) (Mul64 (Const64 [c]) x)) (Mul32 (Const32 [c]) (Add32 (Const32 [d]) x)) => (Add32 (Const32 [c*d]) (Mul32 (Const32 [c]) x)) // Rewrite x*y ± x*z to x*(y±z) (Add(64|32|16|8) (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z)) => (Mul(64|32|16|8) x (Add(64|32|16|8) y z)) (Sub(64|32|16|8) (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z)) => (Mul(64|32|16|8) x (Sub(64|32|16|8) y z)) // rewrite shifts of 8/16/32 bit consts into 64 bit consts to reduce // the number of the other rewrite rules for const shifts (Lsh64x32 x (Const32 [c])) => (Lsh64x64 x (Const64 [int64(uint32(c))])) (Lsh64x16 x (Const16 [c])) => (Lsh64x64 x (Const64 [int64(uint16(c))])) (Lsh64x8 x (Const8 [c])) => (Lsh64x64 x (Const64 [int64(uint8(c))])) (Rsh64x32 x (Const32 [c])) => (Rsh64x64 x (Const64 [int64(uint32(c))])) (Rsh64x16 x (Const16 [c])) => (Rsh64x64 x (Const64 [int64(uint16(c))])) (Rsh64x8 x (Const8 [c])) => (Rsh64x64 x (Const64 [int64(uint8(c))])) (Rsh64Ux32 x (Const32 [c])) => (Rsh64Ux64 x (Const64 [int64(uint32(c))])) (Rsh64Ux16 x (Const16 [c])) => (Rsh64Ux64 x (Const64 [int64(uint16(c))])) (Rsh64Ux8 x (Const8 [c])) => (Rsh64Ux64 x (Const64 [int64(uint8(c))])) (Lsh32x32 x (Const32 [c])) => (Lsh32x64 x (Const64 [int64(uint32(c))])) (Lsh32x16 x (Const16 [c])) => (Lsh32x64 x (Const64 [int64(uint16(c))])) (Lsh32x8 x (Const8 [c])) => (Lsh32x64 x (Const64 [int64(uint8(c))])) (Rsh32x32 x (Const32 [c])) => (Rsh32x64 x (Const64 [int64(uint32(c))])) (Rsh32x16 x (Const16 [c])) => (Rsh32x64 x (Const64 [int64(uint16(c))])) (Rsh32x8 x (Const8 [c])) => (Rsh32x64 x (Const64 [int64(uint8(c))])) (Rsh32Ux32 x (Const32 [c])) => (Rsh32Ux64 x (Const64 [int64(uint32(c))])) (Rsh32Ux16 x (Const16 [c])) => (Rsh32Ux64 x (Const64 [int64(uint16(c))])) (Rsh32Ux8 x (Const8 [c])) => (Rsh32Ux64 x (Const64 [int64(uint8(c))])) (Lsh16x32 x (Const32 [c])) => (Lsh16x64 x (Const64 [int64(uint32(c))])) (Lsh16x16 x (Const16 [c])) => (Lsh16x64 x (Const64 [int64(uint16(c))])) (Lsh16x8 x (Const8 [c])) => (Lsh16x64 x (Const64 [int64(uint8(c))])) (Rsh16x32 x (Const32 [c])) => (Rsh16x64 x (Const64 [int64(uint32(c))])) (Rsh16x16 x (Const16 [c])) => (Rsh16x64 x (Const64 [int64(uint16(c))])) (Rsh16x8 x (Const8 [c])) => (Rsh16x64 x (Const64 [int64(uint8(c))])) (Rsh16Ux32 x (Const32 [c])) => (Rsh16Ux64 x (Const64 [int64(uint32(c))])) (Rsh16Ux16 x (Const16 [c])) => (Rsh16Ux64 x (Const64 [int64(uint16(c))])) (Rsh16Ux8 x (Const8 [c])) => (Rsh16Ux64 x (Const64 [int64(uint8(c))])) (Lsh8x32 x (Const32 [c])) => (Lsh8x64 x (Const64 [int64(uint32(c))])) (Lsh8x16 x (Const16 [c])) => (Lsh8x64 x (Const64 [int64(uint16(c))])) (Lsh8x8 x (Const8 [c])) => (Lsh8x64 x (Const64 [int64(uint8(c))])) (Rsh8x32 x (Const32 [c])) => (Rsh8x64 x (Const64 [int64(uint32(c))])) (Rsh8x16 x (Const16 [c])) => (Rsh8x64 x (Const64 [int64(uint16(c))])) (Rsh8x8 x (Const8 [c])) => (Rsh8x64 x (Const64 [int64(uint8(c))])) (Rsh8Ux32 x (Const32 [c])) => (Rsh8Ux64 x (Const64 [int64(uint32(c))])) (Rsh8Ux16 x (Const16 [c])) => (Rsh8Ux64 x (Const64 [int64(uint16(c))])) (Rsh8Ux8 x (Const8 [c])) => (Rsh8Ux64 x (Const64 [int64(uint8(c))])) // shifts by zero (Lsh(64|32|16|8)x64 x (Const64 [0])) => x (Rsh(64|32|16|8)x64 x (Const64 [0])) => x (Rsh(64|32|16|8)Ux64 x (Const64 [0])) => x // rotates by multiples of register width (RotateLeft64 x (Const64 [c])) && c%64 == 0 => x (RotateLeft32 x (Const32 [c])) && c%32 == 0 => x (RotateLeft16 x (Const16 [c])) && c%16 == 0 => x (RotateLeft8 x (Const8 [c])) && c%8 == 0 => x // zero shifted (Lsh64x(64|32|16|8) (Const64 [0]) _) => (Const64 [0]) (Rsh64x(64|32|16|8) (Const64 [0]) _) => (Const64 [0]) (Rsh64Ux(64|32|16|8) (Const64 [0]) _) => (Const64 [0]) (Lsh32x(64|32|16|8) (Const32 [0]) _) => (Const32 [0]) (Rsh32x(64|32|16|8) (Const32 [0]) _) => (Const32 [0]) (Rsh32Ux(64|32|16|8) (Const32 [0]) _) => (Const32 [0]) (Lsh16x(64|32|16|8) (Const16 [0]) _) => (Const16 [0]) (Rsh16x(64|32|16|8) (Const16 [0]) _) => (Const16 [0]) (Rsh16Ux(64|32|16|8) (Const16 [0]) _) => (Const16 [0]) (Lsh8x(64|32|16|8) (Const8 [0]) _) => (Const8 [0]) (Rsh8x(64|32|16|8) (Const8 [0]) _) => (Const8 [0]) (Rsh8Ux(64|32|16|8) (Const8 [0]) _) => (Const8 [0]) // large left shifts of all values, and right shifts of unsigned values ((Lsh64|Rsh64U)x64 _ (Const64 [c])) && uint64(c) >= 64 => (Const64 [0]) ((Lsh32|Rsh32U)x64 _ (Const64 [c])) && uint64(c) >= 32 => (Const32 [0]) ((Lsh16|Rsh16U)x64 _ (Const64 [c])) && uint64(c) >= 16 => (Const16 [0]) ((Lsh8|Rsh8U)x64 _ (Const64 [c])) && uint64(c) >= 8 => (Const8 [0]) // combine const shifts (Lsh64x64 (Lsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh64x64 x (Const64 [c+d])) (Lsh32x64 (Lsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh32x64 x (Const64 [c+d])) (Lsh16x64 (Lsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh16x64 x (Const64 [c+d])) (Lsh8x64 (Lsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh8x64 x (Const64 [c+d])) (Rsh64x64 (Rsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh64x64 x (Const64 [c+d])) (Rsh32x64 (Rsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh32x64 x (Const64 [c+d])) (Rsh16x64 (Rsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh16x64 x (Const64 [c+d])) (Rsh8x64 (Rsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh8x64 x (Const64 [c+d])) (Rsh64Ux64 (Rsh64Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh64Ux64 x (Const64 [c+d])) (Rsh32Ux64 (Rsh32Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh32Ux64 x (Const64 [c+d])) (Rsh16Ux64 (Rsh16Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh16Ux64 x (Const64 [c+d])) (Rsh8Ux64 (Rsh8Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh8Ux64 x (Const64 [c+d])) // Remove signed right shift before an unsigned right shift that extracts the sign bit. (Rsh8Ux64 (Rsh8x64 x _) (Const64 [7] )) => (Rsh8Ux64 x (Const64 [7] )) (Rsh16Ux64 (Rsh16x64 x _) (Const64 [15])) => (Rsh16Ux64 x (Const64 [15])) (Rsh32Ux64 (Rsh32x64 x _) (Const64 [31])) => (Rsh32Ux64 x (Const64 [31])) (Rsh64Ux64 (Rsh64x64 x _) (Const64 [63])) => (Rsh64Ux64 x (Const64 [63])) // Convert x>>c<= 0 && c < 64 && i.Uses == 1 => (And64 x (Const64 [int64(-1) << c])) (Lsh32x64 i:(Rsh(32|32U)x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 32 && i.Uses == 1 => (And32 x (Const32 [int32(-1) << c])) (Lsh16x64 i:(Rsh(16|16U)x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 16 && i.Uses == 1 => (And16 x (Const16 [int16(-1) << c])) (Lsh8x64 i:(Rsh(8|8U)x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 8 && i.Uses == 1 => (And8 x (Const8 [int8(-1) << c])) // similarly for x<>c (Rsh64Ux64 i:(Lsh64x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 64 && i.Uses == 1 => (And64 x (Const64 [int64(^uint64(0)>>c)])) (Rsh32Ux64 i:(Lsh32x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 32 && i.Uses == 1 => (And32 x (Const32 [int32(^uint32(0)>>c)])) (Rsh16Ux64 i:(Lsh16x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 16 && i.Uses == 1 => (And16 x (Const16 [int16(^uint16(0)>>c)])) (Rsh8Ux64 i:(Lsh8x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 8 && i.Uses == 1 => (And8 x (Const8 [int8 (^uint8 (0)>>c)])) // ((x >> c1) << c2) >> c3 (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) => (Rsh(64|32|16|8)Ux64 x (Const64 [c1-c2+c3])) // ((x << c1) >> c2) << c3 (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) => (Lsh(64|32|16|8)x64 x (Const64 [c1-c2+c3])) // (x >> c) & uppermask = 0 (And64 (Const64 [m]) (Rsh64Ux64 _ (Const64 [c]))) && c >= int64(64-ntz64(m)) => (Const64 [0]) (And32 (Const32 [m]) (Rsh32Ux64 _ (Const64 [c]))) && c >= int64(32-ntz32(m)) => (Const32 [0]) (And16 (Const16 [m]) (Rsh16Ux64 _ (Const64 [c]))) && c >= int64(16-ntz16(m)) => (Const16 [0]) (And8 (Const8 [m]) (Rsh8Ux64 _ (Const64 [c]))) && c >= int64(8-ntz8(m)) => (Const8 [0]) // (x << c) & lowermask = 0 (And64 (Const64 [m]) (Lsh64x64 _ (Const64 [c]))) && c >= int64(64-nlz64(m)) => (Const64 [0]) (And32 (Const32 [m]) (Lsh32x64 _ (Const64 [c]))) && c >= int64(32-nlz32(m)) => (Const32 [0]) (And16 (Const16 [m]) (Lsh16x64 _ (Const64 [c]))) && c >= int64(16-nlz16(m)) => (Const16 [0]) (And8 (Const8 [m]) (Lsh8x64 _ (Const64 [c]))) && c >= int64(8-nlz8(m)) => (Const8 [0]) // replace shifts with zero extensions (Rsh16Ux64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) => (ZeroExt8to16 (Trunc16to8 x)) (Rsh32Ux64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) => (ZeroExt8to32 (Trunc32to8 x)) (Rsh64Ux64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) => (ZeroExt8to64 (Trunc64to8 x)) (Rsh32Ux64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) => (ZeroExt16to32 (Trunc32to16 x)) (Rsh64Ux64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) => (ZeroExt16to64 (Trunc64to16 x)) (Rsh64Ux64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) => (ZeroExt32to64 (Trunc64to32 x)) // replace shifts with sign extensions (Rsh16x64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) => (SignExt8to16 (Trunc16to8 x)) (Rsh32x64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) => (SignExt8to32 (Trunc32to8 x)) (Rsh64x64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) => (SignExt8to64 (Trunc64to8 x)) (Rsh32x64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) => (SignExt16to32 (Trunc32to16 x)) (Rsh64x64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) => (SignExt16to64 (Trunc64to16 x)) (Rsh64x64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) => (SignExt32to64 (Trunc64to32 x)) // constant comparisons (Eq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c == d]) (Neq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c != d]) (Less(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c < d]) (Leq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c <= d]) (Less64U (Const64 [c]) (Const64 [d])) => (ConstBool [uint64(c) < uint64(d)]) (Less32U (Const32 [c]) (Const32 [d])) => (ConstBool [uint32(c) < uint32(d)]) (Less16U (Const16 [c]) (Const16 [d])) => (ConstBool [uint16(c) < uint16(d)]) (Less8U (Const8 [c]) (Const8 [d])) => (ConstBool [ uint8(c) < uint8(d)]) (Leq64U (Const64 [c]) (Const64 [d])) => (ConstBool [uint64(c) <= uint64(d)]) (Leq32U (Const32 [c]) (Const32 [d])) => (ConstBool [uint32(c) <= uint32(d)]) (Leq16U (Const16 [c]) (Const16 [d])) => (ConstBool [uint16(c) <= uint16(d)]) (Leq8U (Const8 [c]) (Const8 [d])) => (ConstBool [ uint8(c) <= uint8(d)]) (Leq8 (Const8 [0]) (And8 _ (Const8 [c]))) && c >= 0 => (ConstBool [true]) (Leq16 (Const16 [0]) (And16 _ (Const16 [c]))) && c >= 0 => (ConstBool [true]) (Leq32 (Const32 [0]) (And32 _ (Const32 [c]))) && c >= 0 => (ConstBool [true]) (Leq64 (Const64 [0]) (And64 _ (Const64 [c]))) && c >= 0 => (ConstBool [true]) (Leq8 (Const8 [0]) (Rsh8Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true]) (Leq16 (Const16 [0]) (Rsh16Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true]) (Leq32 (Const32 [0]) (Rsh32Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true]) (Leq64 (Const64 [0]) (Rsh64Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true]) // prefer equalities with zero (Less(64|32|16|8) (Const(64|32|16|8) [0]) x) && isNonNegative(x) => (Neq(64|32|16|8) (Const(64|32|16|8) [0]) x) (Less(64|32|16|8) x (Const(64|32|16|8) [1])) && isNonNegative(x) => (Eq(64|32|16|8) (Const(64|32|16|8) [0]) x) (Less(64|32|16|8)U x (Const(64|32|16|8) [1])) => (Eq(64|32|16|8) (Const(64|32|16|8) [0]) x) (Leq(64|32|16|8)U (Const(64|32|16|8) [1]) x) => (Neq(64|32|16|8) (Const(64|32|16|8) [0]) x) // prefer comparisons with zero (Less(64|32|16|8) x (Const(64|32|16|8) [1])) => (Leq(64|32|16|8) x (Const(64|32|16|8) [0])) (Leq(64|32|16|8) x (Const(64|32|16|8) [-1])) => (Less(64|32|16|8) x (Const(64|32|16|8) [0])) (Leq(64|32|16|8) (Const(64|32|16|8) [1]) x) => (Less(64|32|16|8) (Const(64|32|16|8) [0]) x) (Less(64|32|16|8) (Const(64|32|16|8) [-1]) x) => (Leq(64|32|16|8) (Const(64|32|16|8) [0]) x) // constant floating point comparisons (Eq32F (Const32F [c]) (Const32F [d])) => (ConstBool [c == d]) (Eq64F (Const64F [c]) (Const64F [d])) => (ConstBool [c == d]) (Neq32F (Const32F [c]) (Const32F [d])) => (ConstBool [c != d]) (Neq64F (Const64F [c]) (Const64F [d])) => (ConstBool [c != d]) (Less32F (Const32F [c]) (Const32F [d])) => (ConstBool [c < d]) (Less64F (Const64F [c]) (Const64F [d])) => (ConstBool [c < d]) (Leq32F (Const32F [c]) (Const32F [d])) => (ConstBool [c <= d]) (Leq64F (Const64F [c]) (Const64F [d])) => (ConstBool [c <= d]) // simplifications (Or(64|32|16|8) x x) => x (Or(64|32|16|8) (Const(64|32|16|8) [0]) x) => x (Or(64|32|16|8) (Const(64|32|16|8) [-1]) _) => (Const(64|32|16|8) [-1]) (Or(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [-1]) (And(64|32|16|8) x x) => x (And(64|32|16|8) (Const(64|32|16|8) [-1]) x) => x (And(64|32|16|8) (Const(64|32|16|8) [0]) _) => (Const(64|32|16|8) [0]) (And(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [0]) (Xor(64|32|16|8) x x) => (Const(64|32|16|8) [0]) (Xor(64|32|16|8) (Const(64|32|16|8) [0]) x) => x (Xor(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [-1]) (Add(64|32|16|8) (Const(64|32|16|8) [0]) x) => x (Sub(64|32|16|8) x x) => (Const(64|32|16|8) [0]) (Mul(64|32|16|8) (Const(64|32|16|8) [0]) _) => (Const(64|32|16|8) [0]) (Select0 (Mul(64|32)uover (Const(64|32) [0]) x)) => (Const(64|32) [0]) (Select1 (Mul(64|32)uover (Const(64|32) [0]) x)) => (ConstBool [false]) (Com(64|32|16|8) (Com(64|32|16|8) x)) => x (Com(64|32|16|8) (Const(64|32|16|8) [c])) => (Const(64|32|16|8) [^c]) (Neg(64|32|16|8) (Sub(64|32|16|8) x y)) => (Sub(64|32|16|8) y x) (Add(64|32|16|8) x (Neg(64|32|16|8) y)) => (Sub(64|32|16|8) x y) (Xor(64|32|16|8) (Const(64|32|16|8) [-1]) x) => (Com(64|32|16|8) x) (Sub(64|32|16|8) (Neg(64|32|16|8) x) (Com(64|32|16|8) x)) => (Const(64|32|16|8) [1]) (Sub(64|32|16|8) (Com(64|32|16|8) x) (Neg(64|32|16|8) x)) => (Const(64|32|16|8) [-1]) (Add(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [-1]) // Simplification when involving common integer // (t + x) - (t + y) == x - y // (t + x) - (y + t) == x - y // (x + t) - (y + t) == x - y // (x + t) - (t + y) == x - y // (x - t) + (t + y) == x + y // (x - t) + (y + t) == x + y (Sub(64|32|16|8) (Add(64|32|16|8) t x) (Add(64|32|16|8) t y)) => (Sub(64|32|16|8) x y) (Add(64|32|16|8) (Sub(64|32|16|8) x t) (Add(64|32|16|8) t y)) => (Add(64|32|16|8) x y) // ^(x-1) == ^x+1 == -x (Add(64|32|16|8) (Const(64|32|16|8) [1]) (Com(64|32|16|8) x)) => (Neg(64|32|16|8) x) (Com(64|32|16|8) (Add(64|32|16|8) (Const(64|32|16|8) [-1]) x)) => (Neg(64|32|16|8) x) // -(-x) == x (Neg(64|32|16|8) (Neg(64|32|16|8) x)) => x // -^x == x+1 (Neg(64|32|16|8) (Com(64|32|16|8) x)) => (Add(64|32|16|8) (Const(64|32|16|8) [1]) x) (And(64|32|16|8) x (And(64|32|16|8) x y)) => (And(64|32|16|8) x y) (Or(64|32|16|8) x (Or(64|32|16|8) x y)) => (Or(64|32|16|8) x y) (Xor(64|32|16|8) x (Xor(64|32|16|8) x y)) => y // Unsigned comparisons to zero. (Less(64U|32U|16U|8U) _ (Const(64|32|16|8) [0])) => (ConstBool [false]) (Leq(64U|32U|16U|8U) (Const(64|32|16|8) [0]) _) => (ConstBool [true]) // Ands clear bits. Ors set bits. // If a subsequent Or will set all the bits // that an And cleared, we can skip the And. // This happens in bitmasking code like: // x &^= 3 << shift // clear two old bits // x |= v << shift // set two new bits // when shift is a small constant and v ends up a constant 3. (Or8 (And8 x (Const8 [c2])) (Const8 [c1])) && ^(c1 | c2) == 0 => (Or8 (Const8 [c1]) x) (Or16 (And16 x (Const16 [c2])) (Const16 [c1])) && ^(c1 | c2) == 0 => (Or16 (Const16 [c1]) x) (Or32 (And32 x (Const32 [c2])) (Const32 [c1])) && ^(c1 | c2) == 0 => (Or32 (Const32 [c1]) x) (Or64 (And64 x (Const64 [c2])) (Const64 [c1])) && ^(c1 | c2) == 0 => (Or64 (Const64 [c1]) x) (Trunc64to8 (And64 (Const64 [y]) x)) && y&0xFF == 0xFF => (Trunc64to8 x) (Trunc64to16 (And64 (Const64 [y]) x)) && y&0xFFFF == 0xFFFF => (Trunc64to16 x) (Trunc64to32 (And64 (Const64 [y]) x)) && y&0xFFFFFFFF == 0xFFFFFFFF => (Trunc64to32 x) (Trunc32to8 (And32 (Const32 [y]) x)) && y&0xFF == 0xFF => (Trunc32to8 x) (Trunc32to16 (And32 (Const32 [y]) x)) && y&0xFFFF == 0xFFFF => (Trunc32to16 x) (Trunc16to8 (And16 (Const16 [y]) x)) && y&0xFF == 0xFF => (Trunc16to8 x) (ZeroExt8to64 (Trunc64to8 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 56 => x (ZeroExt16to64 (Trunc64to16 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 48 => x (ZeroExt32to64 (Trunc64to32 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 32 => x (ZeroExt8to32 (Trunc32to8 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 24 => x (ZeroExt16to32 (Trunc32to16 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 16 => x (ZeroExt8to16 (Trunc16to8 x:(Rsh16Ux64 _ (Const64 [s])))) && s >= 8 => x (SignExt8to64 (Trunc64to8 x:(Rsh64x64 _ (Const64 [s])))) && s >= 56 => x (SignExt16to64 (Trunc64to16 x:(Rsh64x64 _ (Const64 [s])))) && s >= 48 => x (SignExt32to64 (Trunc64to32 x:(Rsh64x64 _ (Const64 [s])))) && s >= 32 => x (SignExt8to32 (Trunc32to8 x:(Rsh32x64 _ (Const64 [s])))) && s >= 24 => x (SignExt16to32 (Trunc32to16 x:(Rsh32x64 _ (Const64 [s])))) && s >= 16 => x (SignExt8to16 (Trunc16to8 x:(Rsh16x64 _ (Const64 [s])))) && s >= 8 => x (Slicemask (Const32 [x])) && x > 0 => (Const32 [-1]) (Slicemask (Const32 [0])) => (Const32 [0]) (Slicemask (Const64 [x])) && x > 0 => (Const64 [-1]) (Slicemask (Const64 [0])) => (Const64 [0]) // simplifications often used for lengths. e.g. len(s[i:i+5])==5 (Sub(64|32|16|8) (Add(64|32|16|8) x y) x) => y (Sub(64|32|16|8) (Add(64|32|16|8) x y) y) => x (Sub(64|32|16|8) (Sub(64|32|16|8) x y) x) => (Neg(64|32|16|8) y) (Sub(64|32|16|8) x (Add(64|32|16|8) x y)) => (Neg(64|32|16|8) y) (Add(64|32|16|8) x (Sub(64|32|16|8) y x)) => y (Add(64|32|16|8) x (Add(64|32|16|8) y (Sub(64|32|16|8) z x))) => (Add(64|32|16|8) y z) // basic phi simplifications (Phi (Const8 [c]) (Const8 [c])) => (Const8 [c]) (Phi (Const16 [c]) (Const16 [c])) => (Const16 [c]) (Phi (Const32 [c]) (Const32 [c])) => (Const32 [c]) (Phi (Const64 [c]) (Const64 [c])) => (Const64 [c]) // slice and interface comparisons // The frontend ensures that we can only compare against nil, // so we need only compare the first word (interface type or slice ptr). (EqInter x y) => (EqPtr (ITab x) (ITab y)) (NeqInter x y) => (NeqPtr (ITab x) (ITab y)) (EqSlice x y) => (EqPtr (SlicePtr x) (SlicePtr y)) (NeqSlice x y) => (NeqPtr (SlicePtr x) (SlicePtr y)) // Load of store of same address, with compatibly typed value and same size (Load p1 (Store {t2} p2 x _)) && isSamePtr(p1, p2) && t1.Compare(x.Type) == types.CMPeq && t1.Size() == t2.Size() => x (Load p1 (Store {t2} p2 _ (Store {t3} p3 x _))) && isSamePtr(p1, p3) && t1.Compare(x.Type) == types.CMPeq && t1.Size() == t2.Size() && disjoint(p3, t3.Size(), p2, t2.Size()) => x (Load p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 x _)))) && isSamePtr(p1, p4) && t1.Compare(x.Type) == types.CMPeq && t1.Size() == t2.Size() && disjoint(p4, t4.Size(), p2, t2.Size()) && disjoint(p4, t4.Size(), p3, t3.Size()) => x (Load p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 x _))))) && isSamePtr(p1, p5) && t1.Compare(x.Type) == types.CMPeq && t1.Size() == t2.Size() && disjoint(p5, t5.Size(), p2, t2.Size()) && disjoint(p5, t5.Size(), p3, t3.Size()) && disjoint(p5, t5.Size(), p4, t4.Size()) => x // Pass constants through math.Float{32,64}bits and math.Float{32,64}frombits (Load p1 (Store {t2} p2 (Const64 [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 8 && is64BitFloat(t1) && !math.IsNaN(math.Float64frombits(uint64(x))) => (Const64F [math.Float64frombits(uint64(x))]) (Load p1 (Store {t2} p2 (Const32 [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 4 && is32BitFloat(t1) && !math.IsNaN(float64(math.Float32frombits(uint32(x)))) => (Const32F [math.Float32frombits(uint32(x))]) (Load p1 (Store {t2} p2 (Const64F [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 8 && is64BitInt(t1) => (Const64 [int64(math.Float64bits(x))]) (Load p1 (Store {t2} p2 (Const32F [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 4 && is32BitInt(t1) => (Const32 [int32(math.Float32bits(x))]) // Float Loads up to Zeros so they can be constant folded. (Load op:(OffPtr [o1] p1) (Store {t2} p2 _ mem:(Zero [n] p3 _))) && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p3) && CanSSA(t1) && disjoint(op, t1.Size(), p2, t2.Size()) => @mem.Block (Load (OffPtr [o1] p3) mem) (Load op:(OffPtr [o1] p1) (Store {t2} p2 _ (Store {t3} p3 _ mem:(Zero [n] p4 _)))) && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p4) && CanSSA(t1) && disjoint(op, t1.Size(), p2, t2.Size()) && disjoint(op, t1.Size(), p3, t3.Size()) => @mem.Block (Load (OffPtr [o1] p4) mem) (Load op:(OffPtr [o1] p1) (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ mem:(Zero [n] p5 _))))) && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p5) && CanSSA(t1) && disjoint(op, t1.Size(), p2, t2.Size()) && disjoint(op, t1.Size(), p3, t3.Size()) && disjoint(op, t1.Size(), p4, t4.Size()) => @mem.Block (Load (OffPtr [o1] p5) mem) (Load op:(OffPtr [o1] p1) (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 _ mem:(Zero [n] p6 _)))))) && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p6) && CanSSA(t1) && disjoint(op, t1.Size(), p2, t2.Size()) && disjoint(op, t1.Size(), p3, t3.Size()) && disjoint(op, t1.Size(), p4, t4.Size()) && disjoint(op, t1.Size(), p5, t5.Size()) => @mem.Block (Load (OffPtr [o1] p6) mem) // Zero to Load forwarding. (Load (OffPtr [o] p1) (Zero [n] p2 _)) && t1.IsBoolean() && isSamePtr(p1, p2) && n >= o + 1 => (ConstBool [false]) (Load (OffPtr [o] p1) (Zero [n] p2 _)) && is8BitInt(t1) && isSamePtr(p1, p2) && n >= o + 1 => (Const8 [0]) (Load (OffPtr [o] p1) (Zero [n] p2 _)) && is16BitInt(t1) && isSamePtr(p1, p2) && n >= o + 2 => (Const16 [0]) (Load (OffPtr [o] p1) (Zero [n] p2 _)) && is32BitInt(t1) && isSamePtr(p1, p2) && n >= o + 4 => (Const32 [0]) (Load (OffPtr [o] p1) (Zero [n] p2 _)) && is64BitInt(t1) && isSamePtr(p1, p2) && n >= o + 8 => (Const64 [0]) (Load (OffPtr [o] p1) (Zero [n] p2 _)) && is32BitFloat(t1) && isSamePtr(p1, p2) && n >= o + 4 => (Const32F [0]) (Load (OffPtr [o] p1) (Zero [n] p2 _)) && is64BitFloat(t1) && isSamePtr(p1, p2) && n >= o + 8 => (Const64F [0]) // Eliminate stores of values that have just been loaded from the same location. // We also handle the common case where there are some intermediate stores. (Store {t1} p1 (Load p2 mem) mem) && isSamePtr(p1, p2) && t2.Size() == t1.Size() => mem (Store {t1} p1 (Load p2 oldmem) mem:(Store {t3} p3 _ oldmem)) && isSamePtr(p1, p2) && t2.Size() == t1.Size() && disjoint(p1, t1.Size(), p3, t3.Size()) => mem (Store {t1} p1 (Load p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ oldmem))) && isSamePtr(p1, p2) && t2.Size() == t1.Size() && disjoint(p1, t1.Size(), p3, t3.Size()) && disjoint(p1, t1.Size(), p4, t4.Size()) => mem (Store {t1} p1 (Load p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 _ oldmem)))) && isSamePtr(p1, p2) && t2.Size() == t1.Size() && disjoint(p1, t1.Size(), p3, t3.Size()) && disjoint(p1, t1.Size(), p4, t4.Size()) && disjoint(p1, t1.Size(), p5, t5.Size()) => mem // Don't Store zeros to cleared variables. (Store {t} (OffPtr [o] p1) x mem:(Zero [n] p2 _)) && isConstZero(x) && o >= 0 && t.Size() + o <= n && isSamePtr(p1, p2) => mem (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Zero [n] p3 _))) && isConstZero(x) && o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p3) && disjoint(op, t1.Size(), p2, t2.Size()) => mem (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Zero [n] p4 _)))) && isConstZero(x) && o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p4) && disjoint(op, t1.Size(), p2, t2.Size()) && disjoint(op, t1.Size(), p3, t3.Size()) => mem (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Zero [n] p5 _))))) && isConstZero(x) && o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p5) && disjoint(op, t1.Size(), p2, t2.Size()) && disjoint(op, t1.Size(), p3, t3.Size()) && disjoint(op, t1.Size(), p4, t4.Size()) => mem // Collapse OffPtr (OffPtr (OffPtr p [y]) [x]) => (OffPtr p [x+y]) (OffPtr p [0]) && v.Type.Compare(p.Type) == types.CMPeq => p // indexing operations // Note: bounds check has already been done (PtrIndex ptr idx) && config.PtrSize == 4 && is32Bit(t.Elem().Size()) => (AddPtr ptr (Mul32 idx (Const32 [int32(t.Elem().Size())]))) (PtrIndex ptr idx) && config.PtrSize == 8 => (AddPtr ptr (Mul64 idx (Const64 [t.Elem().Size()]))) // struct operations (StructSelect (StructMake1 x)) => x (StructSelect [0] (StructMake2 x _)) => x (StructSelect [1] (StructMake2 _ x)) => x (StructSelect [0] (StructMake3 x _ _)) => x (StructSelect [1] (StructMake3 _ x _)) => x (StructSelect [2] (StructMake3 _ _ x)) => x (StructSelect [0] (StructMake4 x _ _ _)) => x (StructSelect [1] (StructMake4 _ x _ _)) => x (StructSelect [2] (StructMake4 _ _ x _)) => x (StructSelect [3] (StructMake4 _ _ _ x)) => x (Load _ _) && t.IsStruct() && t.NumFields() == 0 && CanSSA(t) => (StructMake0) (Load ptr mem) && t.IsStruct() && t.NumFields() == 1 && CanSSA(t) => (StructMake1 (Load (OffPtr [0] ptr) mem)) (Load ptr mem) && t.IsStruct() && t.NumFields() == 2 && CanSSA(t) => (StructMake2 (Load (OffPtr [0] ptr) mem) (Load (OffPtr [t.FieldOff(1)] ptr) mem)) (Load ptr mem) && t.IsStruct() && t.NumFields() == 3 && CanSSA(t) => (StructMake3 (Load (OffPtr [0] ptr) mem) (Load (OffPtr [t.FieldOff(1)] ptr) mem) (Load (OffPtr [t.FieldOff(2)] ptr) mem)) (Load ptr mem) && t.IsStruct() && t.NumFields() == 4 && CanSSA(t) => (StructMake4 (Load (OffPtr [0] ptr) mem) (Load (OffPtr [t.FieldOff(1)] ptr) mem) (Load (OffPtr [t.FieldOff(2)] ptr) mem) (Load (OffPtr [t.FieldOff(3)] ptr) mem)) (StructSelect [i] x:(Load ptr mem)) && !CanSSA(t) => @x.Block (Load (OffPtr [t.FieldOff(int(i))] ptr) mem) (Store _ (StructMake0) mem) => mem (Store dst (StructMake1 f0) mem) => (Store {t.FieldType(0)} (OffPtr [0] dst) f0 mem) (Store dst (StructMake2 f0 f1) mem) => (Store {t.FieldType(1)} (OffPtr [t.FieldOff(1)] dst) f1 (Store {t.FieldType(0)} (OffPtr [0] dst) f0 mem)) (Store dst (StructMake3 f0 f1 f2) mem) => (Store {t.FieldType(2)} (OffPtr [t.FieldOff(2)] dst) f2 (Store {t.FieldType(1)} (OffPtr [t.FieldOff(1)] dst) f1 (Store {t.FieldType(0)} (OffPtr [0] dst) f0 mem))) (Store dst (StructMake4 f0 f1 f2 f3) mem) => (Store {t.FieldType(3)} (OffPtr [t.FieldOff(3)] dst) f3 (Store {t.FieldType(2)} (OffPtr [t.FieldOff(2)] dst) f2 (Store {t.FieldType(1)} (OffPtr [t.FieldOff(1)] dst) f1 (Store {t.FieldType(0)} (OffPtr [0] dst) f0 mem)))) // Putting struct{*byte} and similar into direct interfaces. (IMake _typ (StructMake1 val)) => (IMake _typ val) (StructSelect [0] (IData x)) => (IData x) // un-SSAable values use mem->mem copies (Store {t} dst (Load src mem) mem) && !CanSSA(t) => (Move {t} [t.Size()] dst src mem) (Store {t} dst (Load src mem) (VarDef {x} mem)) && !CanSSA(t) => (Move {t} [t.Size()] dst src (VarDef {x} mem)) // array ops (ArraySelect (ArrayMake1 x)) => x (Load _ _) && t.IsArray() && t.NumElem() == 0 => (ArrayMake0) (Load ptr mem) && t.IsArray() && t.NumElem() == 1 && CanSSA(t) => (ArrayMake1 (Load ptr mem)) (Store _ (ArrayMake0) mem) => mem (Store dst (ArrayMake1 e) mem) => (Store {e.Type} dst e mem) // Putting [1]*byte and similar into direct interfaces. (IMake _typ (ArrayMake1 val)) => (IMake _typ val) (ArraySelect [0] (IData x)) => (IData x) // string ops // Decomposing StringMake and lowering of StringPtr and StringLen // happens in a later pass, dec, so that these operations are available // to other passes for optimizations. (StringPtr (StringMake (Addr {s} base) _)) => (Addr {s} base) (StringLen (StringMake _ (Const64 [c]))) => (Const64 [c]) (ConstString {str}) && config.PtrSize == 4 && str == "" => (StringMake (ConstNil) (Const32 [0])) (ConstString {str}) && config.PtrSize == 8 && str == "" => (StringMake (ConstNil) (Const64 [0])) (ConstString {str}) && config.PtrSize == 4 && str != "" => (StringMake (Addr {fe.StringData(str)} (SB)) (Const32 [int32(len(str))])) (ConstString {str}) && config.PtrSize == 8 && str != "" => (StringMake (Addr {fe.StringData(str)} (SB)) (Const64 [int64(len(str))])) // slice ops // Only a few slice rules are provided here. See dec.rules for // a more comprehensive set. (SliceLen (SliceMake _ (Const64 [c]) _)) => (Const64 [c]) (SliceCap (SliceMake _ _ (Const64 [c]))) => (Const64 [c]) (SliceLen (SliceMake _ (Const32 [c]) _)) => (Const32 [c]) (SliceCap (SliceMake _ _ (Const32 [c]))) => (Const32 [c]) (SlicePtr (SliceMake (SlicePtr x) _ _)) => (SlicePtr x) (SliceLen (SliceMake _ (SliceLen x) _)) => (SliceLen x) (SliceCap (SliceMake _ _ (SliceCap x))) => (SliceCap x) (SliceCap (SliceMake _ _ (SliceLen x))) => (SliceLen x) (ConstSlice) && config.PtrSize == 4 => (SliceMake (ConstNil ) (Const32 [0]) (Const32 [0])) (ConstSlice) && config.PtrSize == 8 => (SliceMake (ConstNil ) (Const64 [0]) (Const64 [0])) // interface ops (ConstInterface) => (IMake (ConstNil ) (ConstNil )) (NilCheck ptr:(GetG mem) mem) => ptr (If (Not cond) yes no) => (If cond no yes) (If (ConstBool [c]) yes no) && c => (First yes no) (If (ConstBool [c]) yes no) && !c => (First no yes) (Phi nx:(Not x) ny:(Not y)) && nx.Uses == 1 && ny.Uses == 1 => (Not (Phi x y)) // Get rid of Convert ops for pointer arithmetic on unsafe.Pointer. (Convert (Add(64|32) (Convert ptr mem) off) mem) => (AddPtr ptr off) (Convert (Convert ptr mem) mem) => ptr // strength reduction of divide by a constant. // See ../magic.go for a detailed description of these algorithms. // Unsigned divide by power of 2. Strength reduce to a shift. (Div8u n (Const8 [c])) && isPowerOfTwo8(c) => (Rsh8Ux64 n (Const64 [log8(c)])) (Div16u n (Const16 [c])) && isPowerOfTwo16(c) => (Rsh16Ux64 n (Const64 [log16(c)])) (Div32u n (Const32 [c])) && isPowerOfTwo32(c) => (Rsh32Ux64 n (Const64 [log32(c)])) (Div64u n (Const64 [c])) && isPowerOfTwo64(c) => (Rsh64Ux64 n (Const64 [log64(c)])) (Div64u n (Const64 [-1<<63])) => (Rsh64Ux64 n (Const64 [63])) // Signed non-negative divide by power of 2. (Div8 n (Const8 [c])) && isNonNegative(n) && isPowerOfTwo8(c) => (Rsh8Ux64 n (Const64 [log8(c)])) (Div16 n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo16(c) => (Rsh16Ux64 n (Const64 [log16(c)])) (Div32 n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo32(c) => (Rsh32Ux64 n (Const64 [log32(c)])) (Div64 n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo64(c) => (Rsh64Ux64 n (Const64 [log64(c)])) (Div64 n (Const64 [-1<<63])) && isNonNegative(n) => (Const64 [0]) // Unsigned divide, not a power of 2. Strength reduce to a multiply. // For 8-bit divides, we just do a direct 9-bit by 8-bit multiply. (Div8u x (Const8 [c])) && umagicOK8(c) => (Trunc32to8 (Rsh32Ux64 (Mul32 (Const32 [int32(1<<8+umagic8(c).m)]) (ZeroExt8to32 x)) (Const64 [8+umagic8(c).s]))) // For 16-bit divides on 64-bit machines, we do a direct 17-bit by 16-bit multiply. (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 8 => (Trunc64to16 (Rsh64Ux64 (Mul64 (Const64 [int64(1<<16+umagic16(c).m)]) (ZeroExt16to64 x)) (Const64 [16+umagic16(c).s]))) // For 16-bit divides on 32-bit machines (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && umagic16(c).m&1 == 0 => (Trunc32to16 (Rsh32Ux64 (Mul32 (Const32 [int32(1<<15+umagic16(c).m/2)]) (ZeroExt16to32 x)) (Const64 [16+umagic16(c).s-1]))) (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && c&1 == 0 => (Trunc32to16 (Rsh32Ux64 (Mul32 (Const32 [int32(1<<15+(umagic16(c).m+1)/2)]) (Rsh32Ux64 (ZeroExt16to32 x) (Const64 [1]))) (Const64 [16+umagic16(c).s-2]))) (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && config.useAvg => (Trunc32to16 (Rsh32Ux64 (Avg32u (Lsh32x64 (ZeroExt16to32 x) (Const64 [16])) (Mul32 (Const32 [int32(umagic16(c).m)]) (ZeroExt16to32 x))) (Const64 [16+umagic16(c).s-1]))) // For 32-bit divides on 32-bit machines (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && umagic32(c).m&1 == 0 && config.useHmul => (Rsh32Ux64 (Hmul32u (Const32 [int32(1<<31+umagic32(c).m/2)]) x) (Const64 [umagic32(c).s-1])) (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && c&1 == 0 && config.useHmul => (Rsh32Ux64 (Hmul32u (Const32 [int32(1<<31+(umagic32(c).m+1)/2)]) (Rsh32Ux64 x (Const64 [1]))) (Const64 [umagic32(c).s-2])) (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && config.useAvg && config.useHmul => (Rsh32Ux64 (Avg32u x (Hmul32u (Const32 [int32(umagic32(c).m)]) x)) (Const64 [umagic32(c).s-1])) // For 32-bit divides on 64-bit machines // We'll use a regular (non-hi) multiply for this case. (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && umagic32(c).m&1 == 0 => (Trunc64to32 (Rsh64Ux64 (Mul64 (Const64 [int64(1<<31+umagic32(c).m/2)]) (ZeroExt32to64 x)) (Const64 [32+umagic32(c).s-1]))) (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && c&1 == 0 => (Trunc64to32 (Rsh64Ux64 (Mul64 (Const64 [int64(1<<31+(umagic32(c).m+1)/2)]) (Rsh64Ux64 (ZeroExt32to64 x) (Const64 [1]))) (Const64 [32+umagic32(c).s-2]))) (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && config.useAvg => (Trunc64to32 (Rsh64Ux64 (Avg64u (Lsh64x64 (ZeroExt32to64 x) (Const64 [32])) (Mul64 (Const64 [int64(umagic32(c).m)]) (ZeroExt32to64 x))) (Const64 [32+umagic32(c).s-1]))) // For unsigned 64-bit divides on 32-bit machines, // if the constant fits in 16 bits (so that the last term // fits in 32 bits), convert to three 32-bit divides by a constant. // // If 1<<32 = Q * c + R // and x = hi << 32 + lo // // Then x = (hi/c*c + hi%c) << 32 + lo // = hi/c*c<<32 + hi%c<<32 + lo // = hi/c*c<<32 + (hi%c)*(Q*c+R) + lo/c*c + lo%c // = hi/c*c<<32 + (hi%c)*Q*c + lo/c*c + (hi%c*R+lo%c) // and x / c = (hi/c)<<32 + (hi%c)*Q + lo/c + (hi%c*R+lo%c)/c (Div64u x (Const64 [c])) && c > 0 && c <= 0xFFFF && umagicOK32(int32(c)) && config.RegSize == 4 && config.useHmul => (Add64 (Add64 (Add64 (Lsh64x64 (ZeroExt32to64 (Div32u (Trunc64to32 (Rsh64Ux64 x (Const64 [32]))) (Const32 [int32(c)]))) (Const64 [32])) (ZeroExt32to64 (Div32u (Trunc64to32 x) (Const32 [int32(c)])))) (Mul64 (ZeroExt32to64 (Mod32u (Trunc64to32 (Rsh64Ux64 x (Const64 [32]))) (Const32 [int32(c)]))) (Const64 [int64((1<<32)/c)]))) (ZeroExt32to64 (Div32u (Add32 (Mod32u (Trunc64to32 x) (Const32 [int32(c)])) (Mul32 (Mod32u (Trunc64to32 (Rsh64Ux64 x (Const64 [32]))) (Const32 [int32(c)])) (Const32 [int32((1<<32)%c)]))) (Const32 [int32(c)])))) // For 64-bit divides on 64-bit machines // (64-bit divides on 32-bit machines are lowered to a runtime call by the walk pass.) (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && umagic64(c).m&1 == 0 && config.useHmul => (Rsh64Ux64 (Hmul64u (Const64 [int64(1<<63+umagic64(c).m/2)]) x) (Const64 [umagic64(c).s-1])) (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && c&1 == 0 && config.useHmul => (Rsh64Ux64 (Hmul64u (Const64 [int64(1<<63+(umagic64(c).m+1)/2)]) (Rsh64Ux64 x (Const64 [1]))) (Const64 [umagic64(c).s-2])) (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && config.useAvg && config.useHmul => (Rsh64Ux64 (Avg64u x (Hmul64u (Const64 [int64(umagic64(c).m)]) x)) (Const64 [umagic64(c).s-1])) // Signed divide by a negative constant. Rewrite to divide by a positive constant. (Div8 n (Const8 [c])) && c < 0 && c != -1<<7 => (Neg8 (Div8 n (Const8 [-c]))) (Div16 n (Const16 [c])) && c < 0 && c != -1<<15 => (Neg16 (Div16 n (Const16 [-c]))) (Div32 n (Const32 [c])) && c < 0 && c != -1<<31 => (Neg32 (Div32 n (Const32 [-c]))) (Div64 n (Const64 [c])) && c < 0 && c != -1<<63 => (Neg64 (Div64 n (Const64 [-c]))) // Dividing by the most-negative number. Result is always 0 except // if the input is also the most-negative number. // We can detect that using the sign bit of x & -x. (Div8 x (Const8 [-1<<7 ])) => (Rsh8Ux64 (And8 x (Neg8 x)) (Const64 [7 ])) (Div16 x (Const16 [-1<<15])) => (Rsh16Ux64 (And16 x (Neg16 x)) (Const64 [15])) (Div32 x (Const32 [-1<<31])) => (Rsh32Ux64 (And32 x (Neg32 x)) (Const64 [31])) (Div64 x (Const64 [-1<<63])) => (Rsh64Ux64 (And64 x (Neg64 x)) (Const64 [63])) // Signed divide by power of 2. // n / c = n >> log(c) if n >= 0 // = (n+c-1) >> log(c) if n < 0 // We conditionally add c-1 by adding n>>63>>(64-log(c)) (first shift signed, second shift unsigned). (Div8 n (Const8 [c])) && isPowerOfTwo8(c) => (Rsh8x64 (Add8 n (Rsh8Ux64 (Rsh8x64 n (Const64 [ 7])) (Const64 [int64( 8-log8(c))]))) (Const64 [int64(log8(c))])) (Div16 n (Const16 [c])) && isPowerOfTwo16(c) => (Rsh16x64 (Add16 n (Rsh16Ux64 (Rsh16x64 n (Const64 [15])) (Const64 [int64(16-log16(c))]))) (Const64 [int64(log16(c))])) (Div32 n (Const32 [c])) && isPowerOfTwo32(c) => (Rsh32x64 (Add32 n (Rsh32Ux64 (Rsh32x64 n (Const64 [31])) (Const64 [int64(32-log32(c))]))) (Const64 [int64(log32(c))])) (Div64 n (Const64 [c])) && isPowerOfTwo64(c) => (Rsh64x64 (Add64 n (Rsh64Ux64 (Rsh64x64 n (Const64 [63])) (Const64 [int64(64-log64(c))]))) (Const64 [int64(log64(c))])) // Signed divide, not a power of 2. Strength reduce to a multiply. (Div8 x (Const8 [c])) && smagicOK8(c) => (Sub8 (Rsh32x64 (Mul32 (Const32 [int32(smagic8(c).m)]) (SignExt8to32 x)) (Const64 [8+smagic8(c).s])) (Rsh32x64 (SignExt8to32 x) (Const64 [31]))) (Div16 x (Const16 [c])) && smagicOK16(c) => (Sub16 (Rsh32x64 (Mul32 (Const32 [int32(smagic16(c).m)]) (SignExt16to32 x)) (Const64 [16+smagic16(c).s])) (Rsh32x64 (SignExt16to32 x) (Const64 [31]))) (Div32 x (Const32 [c])) && smagicOK32(c) && config.RegSize == 8 => (Sub32 (Rsh64x64 (Mul64 (Const64 [int64(smagic32(c).m)]) (SignExt32to64 x)) (Const64 [32+smagic32(c).s])) (Rsh64x64 (SignExt32to64 x) (Const64 [63]))) (Div32 x (Const32 [c])) && smagicOK32(c) && config.RegSize == 4 && smagic32(c).m&1 == 0 && config.useHmul => (Sub32 (Rsh32x64 (Hmul32 (Const32 [int32(smagic32(c).m/2)]) x) (Const64 [smagic32(c).s-1])) (Rsh32x64 x (Const64 [31]))) (Div32 x (Const32 [c])) && smagicOK32(c) && config.RegSize == 4 && smagic32(c).m&1 != 0 && config.useHmul => (Sub32 (Rsh32x64 (Add32 (Hmul32 (Const32 [int32(smagic32(c).m)]) x) x) (Const64 [smagic32(c).s])) (Rsh32x64 x (Const64 [31]))) (Div64 x (Const64 [c])) && smagicOK64(c) && smagic64(c).m&1 == 0 && config.useHmul => (Sub64 (Rsh64x64 (Hmul64 (Const64 [int64(smagic64(c).m/2)]) x) (Const64 [smagic64(c).s-1])) (Rsh64x64 x (Const64 [63]))) (Div64 x (Const64 [c])) && smagicOK64(c) && smagic64(c).m&1 != 0 && config.useHmul => (Sub64 (Rsh64x64 (Add64 (Hmul64 (Const64 [int64(smagic64(c).m)]) x) x) (Const64 [smagic64(c).s])) (Rsh64x64 x (Const64 [63]))) // Unsigned mod by power of 2 constant. (Mod8u n (Const8 [c])) && isPowerOfTwo8(c) => (And8 n (Const8 [c-1])) (Mod16u n (Const16 [c])) && isPowerOfTwo16(c) => (And16 n (Const16 [c-1])) (Mod32u n (Const32 [c])) && isPowerOfTwo32(c) => (And32 n (Const32 [c-1])) (Mod64u n (Const64 [c])) && isPowerOfTwo64(c) => (And64 n (Const64 [c-1])) (Mod64u n (Const64 [-1<<63])) => (And64 n (Const64 [1<<63-1])) // Signed non-negative mod by power of 2 constant. (Mod8 n (Const8 [c])) && isNonNegative(n) && isPowerOfTwo8(c) => (And8 n (Const8 [c-1])) (Mod16 n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo16(c) => (And16 n (Const16 [c-1])) (Mod32 n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo32(c) => (And32 n (Const32 [c-1])) (Mod64 n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo64(c) => (And64 n (Const64 [c-1])) (Mod64 n (Const64 [-1<<63])) && isNonNegative(n) => n // Signed mod by negative constant. (Mod8 n (Const8 [c])) && c < 0 && c != -1<<7 => (Mod8 n (Const8 [-c])) (Mod16 n (Const16 [c])) && c < 0 && c != -1<<15 => (Mod16 n (Const16 [-c])) (Mod32 n (Const32 [c])) && c < 0 && c != -1<<31 => (Mod32 n (Const32 [-c])) (Mod64 n (Const64 [c])) && c < 0 && c != -1<<63 => (Mod64 n (Const64 [-c])) // All other mods by constants, do A%B = A-(A/B*B). // This implements % with two * and a bunch of ancillary ops. // One of the * is free if the user's code also computes A/B. (Mod8 x (Const8 [c])) && x.Op != OpConst8 && (c > 0 || c == -1<<7) => (Sub8 x (Mul8 (Div8 x (Const8 [c])) (Const8 [c]))) (Mod16 x (Const16 [c])) && x.Op != OpConst16 && (c > 0 || c == -1<<15) => (Sub16 x (Mul16 (Div16 x (Const16 [c])) (Const16 [c]))) (Mod32 x (Const32 [c])) && x.Op != OpConst32 && (c > 0 || c == -1<<31) => (Sub32 x (Mul32 (Div32 x (Const32 [c])) (Const32 [c]))) (Mod64 x (Const64 [c])) && x.Op != OpConst64 && (c > 0 || c == -1<<63) => (Sub64 x (Mul64 (Div64 x (Const64 [c])) (Const64 [c]))) (Mod8u x (Const8 [c])) && x.Op != OpConst8 && c > 0 && umagicOK8( c) => (Sub8 x (Mul8 (Div8u x (Const8 [c])) (Const8 [c]))) (Mod16u x (Const16 [c])) && x.Op != OpConst16 && c > 0 && umagicOK16(c) => (Sub16 x (Mul16 (Div16u x (Const16 [c])) (Const16 [c]))) (Mod32u x (Const32 [c])) && x.Op != OpConst32 && c > 0 && umagicOK32(c) => (Sub32 x (Mul32 (Div32u x (Const32 [c])) (Const32 [c]))) (Mod64u x (Const64 [c])) && x.Op != OpConst64 && c > 0 && umagicOK64(c) => (Sub64 x (Mul64 (Div64u x (Const64 [c])) (Const64 [c]))) // For architectures without rotates on less than 32-bits, promote these checks to 32-bit. (Eq8 (Mod8u x (Const8 [c])) (Const8 [0])) && x.Op != OpConst8 && udivisibleOK8(c) && !hasSmallRotate(config) => (Eq32 (Mod32u (ZeroExt8to32 x) (Const32 [int32(uint8(c))])) (Const32 [0])) (Eq16 (Mod16u x (Const16 [c])) (Const16 [0])) && x.Op != OpConst16 && udivisibleOK16(c) && !hasSmallRotate(config) => (Eq32 (Mod32u (ZeroExt16to32 x) (Const32 [int32(uint16(c))])) (Const32 [0])) (Eq8 (Mod8 x (Const8 [c])) (Const8 [0])) && x.Op != OpConst8 && sdivisibleOK8(c) && !hasSmallRotate(config) => (Eq32 (Mod32 (SignExt8to32 x) (Const32 [int32(c)])) (Const32 [0])) (Eq16 (Mod16 x (Const16 [c])) (Const16 [0])) && x.Op != OpConst16 && sdivisibleOK16(c) && !hasSmallRotate(config) => (Eq32 (Mod32 (SignExt16to32 x) (Const32 [int32(c)])) (Const32 [0])) // Divisibility checks x%c == 0 convert to multiply and rotate. // Note, x%c == 0 is rewritten as x == c*(x/c) during the opt pass // where (x/c) is performed using multiplication with magic constants. // To rewrite x%c == 0 requires pattern matching the rewritten expression // and checking that the division by the same constant wasn't already calculated. // This check is made by counting uses of the magic constant multiplication. // Note that if there were an intermediate opt pass, this rule could be applied // directly on the Div op and magic division rewrites could be delayed to late opt. // Unsigned divisibility checks convert to multiply and rotate. (Eq8 x (Mul8 (Const8 [c]) (Trunc32to8 (Rsh32Ux64 mul:(Mul32 (Const32 [m]) (ZeroExt8to32 x)) (Const64 [s]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int32(1<<8+umagic8(c).m) && s == 8+umagic8(c).s && x.Op != OpConst8 && udivisibleOK8(c) => (Leq8U (RotateLeft8 (Mul8 (Const8 [int8(udivisible8(c).m)]) x) (Const8 [int8(8-udivisible8(c).k)]) ) (Const8 [int8(udivisible8(c).max)]) ) (Eq16 x (Mul16 (Const16 [c]) (Trunc64to16 (Rsh64Ux64 mul:(Mul64 (Const64 [m]) (ZeroExt16to64 x)) (Const64 [s]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(1<<16+umagic16(c).m) && s == 16+umagic16(c).s && x.Op != OpConst16 && udivisibleOK16(c) => (Leq16U (RotateLeft16 (Mul16 (Const16 [int16(udivisible16(c).m)]) x) (Const16 [int16(16-udivisible16(c).k)]) ) (Const16 [int16(udivisible16(c).max)]) ) (Eq16 x (Mul16 (Const16 [c]) (Trunc32to16 (Rsh32Ux64 mul:(Mul32 (Const32 [m]) (ZeroExt16to32 x)) (Const64 [s]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int32(1<<15+umagic16(c).m/2) && s == 16+umagic16(c).s-1 && x.Op != OpConst16 && udivisibleOK16(c) => (Leq16U (RotateLeft16 (Mul16 (Const16 [int16(udivisible16(c).m)]) x) (Const16 [int16(16-udivisible16(c).k)]) ) (Const16 [int16(udivisible16(c).max)]) ) (Eq16 x (Mul16 (Const16 [c]) (Trunc32to16 (Rsh32Ux64 mul:(Mul32 (Const32 [m]) (Rsh32Ux64 (ZeroExt16to32 x) (Const64 [1]))) (Const64 [s]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int32(1<<15+(umagic16(c).m+1)/2) && s == 16+umagic16(c).s-2 && x.Op != OpConst16 && udivisibleOK16(c) => (Leq16U (RotateLeft16 (Mul16 (Const16 [int16(udivisible16(c).m)]) x) (Const16 [int16(16-udivisible16(c).k)]) ) (Const16 [int16(udivisible16(c).max)]) ) (Eq16 x (Mul16 (Const16 [c]) (Trunc32to16 (Rsh32Ux64 (Avg32u (Lsh32x64 (ZeroExt16to32 x) (Const64 [16])) mul:(Mul32 (Const32 [m]) (ZeroExt16to32 x))) (Const64 [s]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int32(umagic16(c).m) && s == 16+umagic16(c).s-1 && x.Op != OpConst16 && udivisibleOK16(c) => (Leq16U (RotateLeft16 (Mul16 (Const16 [int16(udivisible16(c).m)]) x) (Const16 [int16(16-udivisible16(c).k)]) ) (Const16 [int16(udivisible16(c).max)]) ) (Eq32 x (Mul32 (Const32 [c]) (Rsh32Ux64 mul:(Hmul32u (Const32 [m]) x) (Const64 [s])) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int32(1<<31+umagic32(c).m/2) && s == umagic32(c).s-1 && x.Op != OpConst32 && udivisibleOK32(c) => (Leq32U (RotateLeft32 (Mul32 (Const32 [int32(udivisible32(c).m)]) x) (Const32 [int32(32-udivisible32(c).k)]) ) (Const32 [int32(udivisible32(c).max)]) ) (Eq32 x (Mul32 (Const32 [c]) (Rsh32Ux64 mul:(Hmul32u (Const32 [m]) (Rsh32Ux64 x (Const64 [1]))) (Const64 [s])) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int32(1<<31+(umagic32(c).m+1)/2) && s == umagic32(c).s-2 && x.Op != OpConst32 && udivisibleOK32(c) => (Leq32U (RotateLeft32 (Mul32 (Const32 [int32(udivisible32(c).m)]) x) (Const32 [int32(32-udivisible32(c).k)]) ) (Const32 [int32(udivisible32(c).max)]) ) (Eq32 x (Mul32 (Const32 [c]) (Rsh32Ux64 (Avg32u x mul:(Hmul32u (Const32 [m]) x)) (Const64 [s])) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int32(umagic32(c).m) && s == umagic32(c).s-1 && x.Op != OpConst32 && udivisibleOK32(c) => (Leq32U (RotateLeft32 (Mul32 (Const32 [int32(udivisible32(c).m)]) x) (Const32 [int32(32-udivisible32(c).k)]) ) (Const32 [int32(udivisible32(c).max)]) ) (Eq32 x (Mul32 (Const32 [c]) (Trunc64to32 (Rsh64Ux64 mul:(Mul64 (Const64 [m]) (ZeroExt32to64 x)) (Const64 [s]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(1<<31+umagic32(c).m/2) && s == 32+umagic32(c).s-1 && x.Op != OpConst32 && udivisibleOK32(c) => (Leq32U (RotateLeft32 (Mul32 (Const32 [int32(udivisible32(c).m)]) x) (Const32 [int32(32-udivisible32(c).k)]) ) (Const32 [int32(udivisible32(c).max)]) ) (Eq32 x (Mul32 (Const32 [c]) (Trunc64to32 (Rsh64Ux64 mul:(Mul64 (Const64 [m]) (Rsh64Ux64 (ZeroExt32to64 x) (Const64 [1]))) (Const64 [s]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(1<<31+(umagic32(c).m+1)/2) && s == 32+umagic32(c).s-2 && x.Op != OpConst32 && udivisibleOK32(c) => (Leq32U (RotateLeft32 (Mul32 (Const32 [int32(udivisible32(c).m)]) x) (Const32 [int32(32-udivisible32(c).k)]) ) (Const32 [int32(udivisible32(c).max)]) ) (Eq32 x (Mul32 (Const32 [c]) (Trunc64to32 (Rsh64Ux64 (Avg64u (Lsh64x64 (ZeroExt32to64 x) (Const64 [32])) mul:(Mul64 (Const64 [m]) (ZeroExt32to64 x))) (Const64 [s]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(umagic32(c).m) && s == 32+umagic32(c).s-1 && x.Op != OpConst32 && udivisibleOK32(c) => (Leq32U (RotateLeft32 (Mul32 (Const32 [int32(udivisible32(c).m)]) x) (Const32 [int32(32-udivisible32(c).k)]) ) (Const32 [int32(udivisible32(c).max)]) ) (Eq64 x (Mul64 (Const64 [c]) (Rsh64Ux64 mul:(Hmul64u (Const64 [m]) x) (Const64 [s])) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(1<<63+umagic64(c).m/2) && s == umagic64(c).s-1 && x.Op != OpConst64 && udivisibleOK64(c) => (Leq64U (RotateLeft64 (Mul64 (Const64 [int64(udivisible64(c).m)]) x) (Const64 [64-udivisible64(c).k]) ) (Const64 [int64(udivisible64(c).max)]) ) (Eq64 x (Mul64 (Const64 [c]) (Rsh64Ux64 mul:(Hmul64u (Const64 [m]) (Rsh64Ux64 x (Const64 [1]))) (Const64 [s])) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(1<<63+(umagic64(c).m+1)/2) && s == umagic64(c).s-2 && x.Op != OpConst64 && udivisibleOK64(c) => (Leq64U (RotateLeft64 (Mul64 (Const64 [int64(udivisible64(c).m)]) x) (Const64 [64-udivisible64(c).k]) ) (Const64 [int64(udivisible64(c).max)]) ) (Eq64 x (Mul64 (Const64 [c]) (Rsh64Ux64 (Avg64u x mul:(Hmul64u (Const64 [m]) x)) (Const64 [s])) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(umagic64(c).m) && s == umagic64(c).s-1 && x.Op != OpConst64 && udivisibleOK64(c) => (Leq64U (RotateLeft64 (Mul64 (Const64 [int64(udivisible64(c).m)]) x) (Const64 [64-udivisible64(c).k]) ) (Const64 [int64(udivisible64(c).max)]) ) // Signed divisibility checks convert to multiply, add and rotate. (Eq8 x (Mul8 (Const8 [c]) (Sub8 (Rsh32x64 mul:(Mul32 (Const32 [m]) (SignExt8to32 x)) (Const64 [s])) (Rsh32x64 (SignExt8to32 x) (Const64 [31]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int32(smagic8(c).m) && s == 8+smagic8(c).s && x.Op != OpConst8 && sdivisibleOK8(c) => (Leq8U (RotateLeft8 (Add8 (Mul8 (Const8 [int8(sdivisible8(c).m)]) x) (Const8 [int8(sdivisible8(c).a)]) ) (Const8 [int8(8-sdivisible8(c).k)]) ) (Const8 [int8(sdivisible8(c).max)]) ) (Eq16 x (Mul16 (Const16 [c]) (Sub16 (Rsh32x64 mul:(Mul32 (Const32 [m]) (SignExt16to32 x)) (Const64 [s])) (Rsh32x64 (SignExt16to32 x) (Const64 [31]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int32(smagic16(c).m) && s == 16+smagic16(c).s && x.Op != OpConst16 && sdivisibleOK16(c) => (Leq16U (RotateLeft16 (Add16 (Mul16 (Const16 [int16(sdivisible16(c).m)]) x) (Const16 [int16(sdivisible16(c).a)]) ) (Const16 [int16(16-sdivisible16(c).k)]) ) (Const16 [int16(sdivisible16(c).max)]) ) (Eq32 x (Mul32 (Const32 [c]) (Sub32 (Rsh64x64 mul:(Mul64 (Const64 [m]) (SignExt32to64 x)) (Const64 [s])) (Rsh64x64 (SignExt32to64 x) (Const64 [63]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(smagic32(c).m) && s == 32+smagic32(c).s && x.Op != OpConst32 && sdivisibleOK32(c) => (Leq32U (RotateLeft32 (Add32 (Mul32 (Const32 [int32(sdivisible32(c).m)]) x) (Const32 [int32(sdivisible32(c).a)]) ) (Const32 [int32(32-sdivisible32(c).k)]) ) (Const32 [int32(sdivisible32(c).max)]) ) (Eq32 x (Mul32 (Const32 [c]) (Sub32 (Rsh32x64 mul:(Hmul32 (Const32 [m]) x) (Const64 [s])) (Rsh32x64 x (Const64 [31]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int32(smagic32(c).m/2) && s == smagic32(c).s-1 && x.Op != OpConst32 && sdivisibleOK32(c) => (Leq32U (RotateLeft32 (Add32 (Mul32 (Const32 [int32(sdivisible32(c).m)]) x) (Const32 [int32(sdivisible32(c).a)]) ) (Const32 [int32(32-sdivisible32(c).k)]) ) (Const32 [int32(sdivisible32(c).max)]) ) (Eq32 x (Mul32 (Const32 [c]) (Sub32 (Rsh32x64 (Add32 mul:(Hmul32 (Const32 [m]) x) x) (Const64 [s])) (Rsh32x64 x (Const64 [31]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int32(smagic32(c).m) && s == smagic32(c).s && x.Op != OpConst32 && sdivisibleOK32(c) => (Leq32U (RotateLeft32 (Add32 (Mul32 (Const32 [int32(sdivisible32(c).m)]) x) (Const32 [int32(sdivisible32(c).a)]) ) (Const32 [int32(32-sdivisible32(c).k)]) ) (Const32 [int32(sdivisible32(c).max)]) ) (Eq64 x (Mul64 (Const64 [c]) (Sub64 (Rsh64x64 mul:(Hmul64 (Const64 [m]) x) (Const64 [s])) (Rsh64x64 x (Const64 [63]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(smagic64(c).m/2) && s == smagic64(c).s-1 && x.Op != OpConst64 && sdivisibleOK64(c) => (Leq64U (RotateLeft64 (Add64 (Mul64 (Const64 [int64(sdivisible64(c).m)]) x) (Const64 [int64(sdivisible64(c).a)]) ) (Const64 [64-sdivisible64(c).k]) ) (Const64 [int64(sdivisible64(c).max)]) ) (Eq64 x (Mul64 (Const64 [c]) (Sub64 (Rsh64x64 (Add64 mul:(Hmul64 (Const64 [m]) x) x) (Const64 [s])) (Rsh64x64 x (Const64 [63]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(smagic64(c).m) && s == smagic64(c).s && x.Op != OpConst64 && sdivisibleOK64(c) => (Leq64U (RotateLeft64 (Add64 (Mul64 (Const64 [int64(sdivisible64(c).m)]) x) (Const64 [int64(sdivisible64(c).a)]) ) (Const64 [64-sdivisible64(c).k]) ) (Const64 [int64(sdivisible64(c).max)]) ) // Divisibility check for signed integers for power of two constant are simple mask. // However, we must match against the rewritten n%c == 0 -> n - c*(n/c) == 0 -> n == c*(n/c) // where n/c contains fixup code to handle signed n. ((Eq8|Neq8) n (Lsh8x64 (Rsh8x64 (Add8 n (Rsh8Ux64 (Rsh8x64 n (Const64 [ 7])) (Const64 [kbar]))) (Const64 [k])) (Const64 [k])) ) && k > 0 && k < 7 && kbar == 8 - k => ((Eq8|Neq8) (And8 n (Const8 [1< [0])) ((Eq16|Neq16) n (Lsh16x64 (Rsh16x64 (Add16 n (Rsh16Ux64 (Rsh16x64 n (Const64 [15])) (Const64 [kbar]))) (Const64 [k])) (Const64 [k])) ) && k > 0 && k < 15 && kbar == 16 - k => ((Eq16|Neq16) (And16 n (Const16 [1< [0])) ((Eq32|Neq32) n (Lsh32x64 (Rsh32x64 (Add32 n (Rsh32Ux64 (Rsh32x64 n (Const64 [31])) (Const64 [kbar]))) (Const64 [k])) (Const64 [k])) ) && k > 0 && k < 31 && kbar == 32 - k => ((Eq32|Neq32) (And32 n (Const32 [1< [0])) ((Eq64|Neq64) n (Lsh64x64 (Rsh64x64 (Add64 n (Rsh64Ux64 (Rsh64x64 n (Const64 [63])) (Const64 [kbar]))) (Const64 [k])) (Const64 [k])) ) && k > 0 && k < 63 && kbar == 64 - k => ((Eq64|Neq64) (And64 n (Const64 [1< [0])) (Eq(8|16|32|64) s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 => (Eq(8|16|32|64) x y) (Neq(8|16|32|64) s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 => (Neq(8|16|32|64) x y) // Optimize bitsets (Eq8 (And8 x (Const8 [y])) (Const8 [y])) && oneBit8(y) => (Neq8 (And8 x (Const8 [y])) (Const8 [0])) (Eq16 (And16 x (Const16 [y])) (Const16 [y])) && oneBit16(y) => (Neq16 (And16 x (Const16 [y])) (Const16 [0])) (Eq32 (And32 x (Const32 [y])) (Const32 [y])) && oneBit32(y) => (Neq32 (And32 x (Const32 [y])) (Const32 [0])) (Eq64 (And64 x (Const64 [y])) (Const64 [y])) && oneBit64(y) => (Neq64 (And64 x (Const64 [y])) (Const64 [0])) (Neq8 (And8 x (Const8 [y])) (Const8 [y])) && oneBit8(y) => (Eq8 (And8 x (Const8 [y])) (Const8 [0])) (Neq16 (And16 x (Const16 [y])) (Const16 [y])) && oneBit16(y) => (Eq16 (And16 x (Const16 [y])) (Const16 [0])) (Neq32 (And32 x (Const32 [y])) (Const32 [y])) && oneBit32(y) => (Eq32 (And32 x (Const32 [y])) (Const32 [0])) (Neq64 (And64 x (Const64 [y])) (Const64 [y])) && oneBit64(y) => (Eq64 (And64 x (Const64 [y])) (Const64 [0])) // Reassociate expressions involving // constants such that constants come first, // exposing obvious constant-folding opportunities. // Reassociate (op (op y C) x) to (op C (op x y)) or similar, where C // is constant, which pushes constants to the outside // of the expression. At that point, any constant-folding // opportunities should be obvious. // Note: don't include AddPtr here! In order to maintain the // invariant that pointers must stay within the pointed-to object, // we can't pull part of a pointer computation above the AddPtr. // See issue 37881. // Note: we don't need to handle any (x-C) cases because we already rewrite // (x-C) to (x+(-C)). // x + (C + z) -> C + (x + z) (Add64 (Add64 i:(Const64 ) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Add64 z x)) (Add32 (Add32 i:(Const32 ) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Add32 z x)) (Add16 (Add16 i:(Const16 ) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Add16 z x)) (Add8 (Add8 i:(Const8 ) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Add8 i (Add8 z x)) // x + (C - z) -> C + (x - z) (Add64 (Sub64 i:(Const64 ) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Sub64 x z)) (Add32 (Sub32 i:(Const32 ) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Sub32 x z)) (Add16 (Sub16 i:(Const16 ) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Sub16 x z)) (Add8 (Sub8 i:(Const8 ) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Add8 i (Sub8 x z)) // x - (C - z) -> x + (z - C) -> (x + z) - C (Sub64 x (Sub64 i:(Const64 ) z)) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 (Add64 x z) i) (Sub32 x (Sub32 i:(Const32 ) z)) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 (Add32 x z) i) (Sub16 x (Sub16 i:(Const16 ) z)) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 (Add16 x z) i) (Sub8 x (Sub8 i:(Const8 ) z)) && (z.Op != OpConst8 && x.Op != OpConst8) => (Sub8 (Add8 x z) i) // x - (z + C) -> x + (-z - C) -> (x - z) - C (Sub64 x (Add64 z i:(Const64 ))) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 (Sub64 x z) i) (Sub32 x (Add32 z i:(Const32 ))) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 (Sub32 x z) i) (Sub16 x (Add16 z i:(Const16 ))) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 (Sub16 x z) i) (Sub8 x (Add8 z i:(Const8 ))) && (z.Op != OpConst8 && x.Op != OpConst8) => (Sub8 (Sub8 x z) i) // (C - z) - x -> C - (z + x) (Sub64 (Sub64 i:(Const64 ) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 i (Add64 z x)) (Sub32 (Sub32 i:(Const32 ) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 i (Add32 z x)) (Sub16 (Sub16 i:(Const16 ) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 i (Add16 z x)) (Sub8 (Sub8 i:(Const8 ) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Sub8 i (Add8 z x)) // (z + C) -x -> C + (z - x) (Sub64 (Add64 z i:(Const64 )) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Sub64 z x)) (Sub32 (Add32 z i:(Const32 )) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Sub32 z x)) (Sub16 (Add16 z i:(Const16 )) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Sub16 z x)) (Sub8 (Add8 z i:(Const8 )) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Add8 i (Sub8 z x)) // x & (C & z) -> C & (x & z) (And64 (And64 i:(Const64 ) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (And64 i (And64 z x)) (And32 (And32 i:(Const32 ) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (And32 i (And32 z x)) (And16 (And16 i:(Const16 ) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (And16 i (And16 z x)) (And8 (And8 i:(Const8 ) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (And8 i (And8 z x)) // x | (C | z) -> C | (x | z) (Or64 (Or64 i:(Const64 ) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Or64 i (Or64 z x)) (Or32 (Or32 i:(Const32 ) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Or32 i (Or32 z x)) (Or16 (Or16 i:(Const16 ) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Or16 i (Or16 z x)) (Or8 (Or8 i:(Const8 ) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Or8 i (Or8 z x)) // x ^ (C ^ z) -> C ^ (x ^ z) (Xor64 (Xor64 i:(Const64 ) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Xor64 i (Xor64 z x)) (Xor32 (Xor32 i:(Const32 ) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Xor32 i (Xor32 z x)) (Xor16 (Xor16 i:(Const16 ) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Xor16 i (Xor16 z x)) (Xor8 (Xor8 i:(Const8 ) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Xor8 i (Xor8 z x)) // x * (D * z) = D * (x * z) (Mul64 (Mul64 i:(Const64 ) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Mul64 i (Mul64 x z)) (Mul32 (Mul32 i:(Const32 ) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Mul32 i (Mul32 x z)) (Mul16 (Mul16 i:(Const16 ) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Mul16 i (Mul16 x z)) (Mul8 (Mul8 i:(Const8 ) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Mul8 i (Mul8 x z)) // C + (D + x) -> (C + D) + x (Add64 (Const64 [c]) (Add64 (Const64 [d]) x)) => (Add64 (Const64 [c+d]) x) (Add32 (Const32 [c]) (Add32 (Const32 [d]) x)) => (Add32 (Const32 [c+d]) x) (Add16 (Const16 [c]) (Add16 (Const16 [d]) x)) => (Add16 (Const16 [c+d]) x) (Add8 (Const8 [c]) (Add8 (Const8 [d]) x)) => (Add8 (Const8 [c+d]) x) // C + (D - x) -> (C + D) - x (Add64 (Const64 [c]) (Sub64 (Const64 [d]) x)) => (Sub64 (Const64 [c+d]) x) (Add32 (Const32 [c]) (Sub32 (Const32 [d]) x)) => (Sub32 (Const32 [c+d]) x) (Add16 (Const16 [c]) (Sub16 (Const16 [d]) x)) => (Sub16 (Const16 [c+d]) x) (Add8 (Const8 [c]) (Sub8 (Const8 [d]) x)) => (Sub8 (Const8 [c+d]) x) // C - (D - x) -> (C - D) + x (Sub64 (Const64 [c]) (Sub64 (Const64 [d]) x)) => (Add64 (Const64 [c-d]) x) (Sub32 (Const32 [c]) (Sub32 (Const32 [d]) x)) => (Add32 (Const32 [c-d]) x) (Sub16 (Const16 [c]) (Sub16 (Const16 [d]) x)) => (Add16 (Const16 [c-d]) x) (Sub8 (Const8 [c]) (Sub8 (Const8 [d]) x)) => (Add8 (Const8 [c-d]) x) // C - (D + x) -> (C - D) - x (Sub64 (Const64 [c]) (Add64 (Const64 [d]) x)) => (Sub64 (Const64 [c-d]) x) (Sub32 (Const32 [c]) (Add32 (Const32 [d]) x)) => (Sub32 (Const32 [c-d]) x) (Sub16 (Const16 [c]) (Add16 (Const16 [d]) x)) => (Sub16 (Const16 [c-d]) x) (Sub8 (Const8 [c]) (Add8 (Const8 [d]) x)) => (Sub8 (Const8 [c-d]) x) // C & (D & x) -> (C & D) & x (And64 (Const64 [c]) (And64 (Const64 [d]) x)) => (And64 (Const64 [c&d]) x) (And32 (Const32 [c]) (And32 (Const32 [d]) x)) => (And32 (Const32 [c&d]) x) (And16 (Const16 [c]) (And16 (Const16 [d]) x)) => (And16 (Const16 [c&d]) x) (And8 (Const8 [c]) (And8 (Const8 [d]) x)) => (And8 (Const8 [c&d]) x) // C | (D | x) -> (C | D) | x (Or64 (Const64 [c]) (Or64 (Const64 [d]) x)) => (Or64 (Const64 [c|d]) x) (Or32 (Const32 [c]) (Or32 (Const32 [d]) x)) => (Or32 (Const32 [c|d]) x) (Or16 (Const16 [c]) (Or16 (Const16 [d]) x)) => (Or16 (Const16 [c|d]) x) (Or8 (Const8 [c]) (Or8 (Const8 [d]) x)) => (Or8 (Const8 [c|d]) x) // C ^ (D ^ x) -> (C ^ D) ^ x (Xor64 (Const64 [c]) (Xor64 (Const64 [d]) x)) => (Xor64 (Const64 [c^d]) x) (Xor32 (Const32 [c]) (Xor32 (Const32 [d]) x)) => (Xor32 (Const32 [c^d]) x) (Xor16 (Const16 [c]) (Xor16 (Const16 [d]) x)) => (Xor16 (Const16 [c^d]) x) (Xor8 (Const8 [c]) (Xor8 (Const8 [d]) x)) => (Xor8 (Const8 [c^d]) x) // C * (D * x) = (C * D) * x (Mul64 (Const64 [c]) (Mul64 (Const64 [d]) x)) => (Mul64 (Const64 [c*d]) x) (Mul32 (Const32 [c]) (Mul32 (Const32 [d]) x)) => (Mul32 (Const32 [c*d]) x) (Mul16 (Const16 [c]) (Mul16 (Const16 [d]) x)) => (Mul16 (Const16 [c*d]) x) (Mul8 (Const8 [c]) (Mul8 (Const8 [d]) x)) => (Mul8 (Const8 [c*d]) x) // floating point optimizations (Mul(32|64)F x (Const(32|64)F [1])) => x (Mul32F x (Const32F [-1])) => (Neg32F x) (Mul64F x (Const64F [-1])) => (Neg64F x) (Mul32F x (Const32F [2])) => (Add32F x x) (Mul64F x (Const64F [2])) => (Add64F x x) (Div32F x (Const32F [c])) && reciprocalExact32(c) => (Mul32F x (Const32F [1/c])) (Div64F x (Const64F [c])) && reciprocalExact64(c) => (Mul64F x (Const64F [1/c])) // rewrite single-precision sqrt expression "float32(math.Sqrt(float64(x)))" (Cvt64Fto32F sqrt0:(Sqrt (Cvt32Fto64F x))) && sqrt0.Uses==1 => (Sqrt32 x) (Sqrt (Const64F [c])) && !math.IsNaN(math.Sqrt(c)) => (Const64F [math.Sqrt(c)]) // for rewriting results of some late-expanded rewrites (below) (SelectN [0] (MakeResult x ___)) => x (SelectN [1] (MakeResult x y ___)) => y (SelectN [2] (MakeResult x y z ___)) => z // for late-expanded calls, recognize newobject and remove zeroing and nilchecks (Zero (SelectN [0] call:(StaticLECall _ _)) mem:(SelectN [1] call)) && isSameCall(call.Aux, "runtime.newobject") => mem (Store (SelectN [0] call:(StaticLECall _ _)) x mem:(SelectN [1] call)) && isConstZero(x) && isSameCall(call.Aux, "runtime.newobject") => mem (Store (OffPtr (SelectN [0] call:(StaticLECall _ _))) x mem:(SelectN [1] call)) && isConstZero(x) && isSameCall(call.Aux, "runtime.newobject") => mem (NilCheck ptr:(SelectN [0] call:(StaticLECall _ _)) _) && isSameCall(call.Aux, "runtime.newobject") && warnRule(fe.Debug_checknil(), v, "removed nil check") => ptr (NilCheck ptr:(OffPtr (SelectN [0] call:(StaticLECall _ _))) _) && isSameCall(call.Aux, "runtime.newobject") && warnRule(fe.Debug_checknil(), v, "removed nil check") => ptr // Addresses of globals are always non-nil. (NilCheck ptr:(Addr {_} (SB)) _) => ptr (NilCheck ptr:(Convert (Addr {_} (SB)) _) _) => ptr // for late-expanded calls, recognize memequal applied to a single constant byte // Support is limited by 1, 2, 4, 8 byte sizes (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [1]) mem) && isSameCall(callAux, "runtime.memequal") && symIsRO(scon) => (MakeResult (Eq8 (Load sptr mem) (Const8 [int8(read8(scon,0))])) mem) (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [1]) mem) && isSameCall(callAux, "runtime.memequal") && symIsRO(scon) => (MakeResult (Eq8 (Load sptr mem) (Const8 [int8(read8(scon,0))])) mem) (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [2]) mem) && isSameCall(callAux, "runtime.memequal") && symIsRO(scon) && canLoadUnaligned(config) => (MakeResult (Eq16 (Load sptr mem) (Const16 [int16(read16(scon,0,config.ctxt.Arch.ByteOrder))])) mem) (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [2]) mem) && isSameCall(callAux, "runtime.memequal") && symIsRO(scon) && canLoadUnaligned(config) => (MakeResult (Eq16 (Load sptr mem) (Const16 [int16(read16(scon,0,config.ctxt.Arch.ByteOrder))])) mem) (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [4]) mem) && isSameCall(callAux, "runtime.memequal") && symIsRO(scon) && canLoadUnaligned(config) => (MakeResult (Eq32 (Load sptr mem) (Const32 [int32(read32(scon,0,config.ctxt.Arch.ByteOrder))])) mem) (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [4]) mem) && isSameCall(callAux, "runtime.memequal") && symIsRO(scon) && canLoadUnaligned(config) => (MakeResult (Eq32 (Load sptr mem) (Const32 [int32(read32(scon,0,config.ctxt.Arch.ByteOrder))])) mem) (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [8]) mem) && isSameCall(callAux, "runtime.memequal") && symIsRO(scon) && canLoadUnaligned(config) && config.PtrSize == 8 => (MakeResult (Eq64 (Load sptr mem) (Const64 [int64(read64(scon,0,config.ctxt.Arch.ByteOrder))])) mem) (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [8]) mem) && isSameCall(callAux, "runtime.memequal") && symIsRO(scon) && canLoadUnaligned(config) && config.PtrSize == 8 => (MakeResult (Eq64 (Load sptr mem) (Const64 [int64(read64(scon,0,config.ctxt.Arch.ByteOrder))])) mem) (StaticLECall {callAux} _ _ (Const64 [0]) mem) && isSameCall(callAux, "runtime.memequal") => (MakeResult (ConstBool [true]) mem) (Static(Call|LECall) {callAux} p q _ mem) && isSameCall(callAux, "runtime.memequal") && isSamePtr(p, q) => (MakeResult (ConstBool [true]) mem) // Turn known-size calls to memclrNoHeapPointers into a Zero. // Note that we are using types.Types[types.TUINT8] instead of sptr.Type.Elem() - see issue 55122 and CL 431496 for more details. (SelectN [0] call:(StaticCall {sym} sptr (Const(64|32) [c]) mem)) && isInlinableMemclr(config, int64(c)) && isSameCall(sym, "runtime.memclrNoHeapPointers") && call.Uses == 1 && clobber(call) => (Zero {types.Types[types.TUINT8]} [int64(c)] sptr mem) // Recognise make([]T, 0) and replace it with a pointer to the zerobase (StaticLECall {callAux} _ (Const(64|32) [0]) (Const(64|32) [0]) mem) && isSameCall(callAux, "runtime.makeslice") => (MakeResult (Addr {ir.Syms.Zerobase} (SB)) mem) // Evaluate constant address comparisons. (EqPtr x x) => (ConstBool [true]) (NeqPtr x x) => (ConstBool [false]) (EqPtr (Addr {x} _) (Addr {y} _)) => (ConstBool [x == y]) (EqPtr (Addr {x} _) (OffPtr [o] (Addr {y} _))) => (ConstBool [x == y && o == 0]) (EqPtr (OffPtr [o1] (Addr {x} _)) (OffPtr [o2] (Addr {y} _))) => (ConstBool [x == y && o1 == o2]) (NeqPtr (Addr {x} _) (Addr {y} _)) => (ConstBool [x != y]) (NeqPtr (Addr {x} _) (OffPtr [o] (Addr {y} _))) => (ConstBool [x != y || o != 0]) (NeqPtr (OffPtr [o1] (Addr {x} _)) (OffPtr [o2] (Addr {y} _))) => (ConstBool [x != y || o1 != o2]) (EqPtr (LocalAddr {x} _ _) (LocalAddr {y} _ _)) => (ConstBool [x == y]) (EqPtr (LocalAddr {x} _ _) (OffPtr [o] (LocalAddr {y} _ _))) => (ConstBool [x == y && o == 0]) (EqPtr (OffPtr [o1] (LocalAddr {x} _ _)) (OffPtr [o2] (LocalAddr {y} _ _))) => (ConstBool [x == y && o1 == o2]) (NeqPtr (LocalAddr {x} _ _) (LocalAddr {y} _ _)) => (ConstBool [x != y]) (NeqPtr (LocalAddr {x} _ _) (OffPtr [o] (LocalAddr {y} _ _))) => (ConstBool [x != y || o != 0]) (NeqPtr (OffPtr [o1] (LocalAddr {x} _ _)) (OffPtr [o2] (LocalAddr {y} _ _))) => (ConstBool [x != y || o1 != o2]) (EqPtr (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) => (ConstBool [o1 == 0]) (NeqPtr (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) => (ConstBool [o1 != 0]) (EqPtr (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) => (ConstBool [o1 == o2]) (NeqPtr (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) => (ConstBool [o1 != o2]) (EqPtr (Const(32|64) [c]) (Const(32|64) [d])) => (ConstBool [c == d]) (NeqPtr (Const(32|64) [c]) (Const(32|64) [d])) => (ConstBool [c != d]) (EqPtr (Convert (Addr {x} _) _) (Addr {y} _)) => (ConstBool [x==y]) (NeqPtr (Convert (Addr {x} _) _) (Addr {y} _)) => (ConstBool [x!=y]) (EqPtr (LocalAddr _ _) (Addr _)) => (ConstBool [false]) (EqPtr (OffPtr (LocalAddr _ _)) (Addr _)) => (ConstBool [false]) (EqPtr (LocalAddr _ _) (OffPtr (Addr _))) => (ConstBool [false]) (EqPtr (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) => (ConstBool [false]) (NeqPtr (LocalAddr _ _) (Addr _)) => (ConstBool [true]) (NeqPtr (OffPtr (LocalAddr _ _)) (Addr _)) => (ConstBool [true]) (NeqPtr (LocalAddr _ _) (OffPtr (Addr _))) => (ConstBool [true]) (NeqPtr (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) => (ConstBool [true]) // Simplify address comparisons. (EqPtr (AddPtr p1 o1) p2) && isSamePtr(p1, p2) => (Not (IsNonNil o1)) (NeqPtr (AddPtr p1 o1) p2) && isSamePtr(p1, p2) => (IsNonNil o1) (EqPtr (Const(32|64) [0]) p) => (Not (IsNonNil p)) (NeqPtr (Const(32|64) [0]) p) => (IsNonNil p) (EqPtr (ConstNil) p) => (Not (IsNonNil p)) (NeqPtr (ConstNil) p) => (IsNonNil p) // Evaluate constant user nil checks. (IsNonNil (ConstNil)) => (ConstBool [false]) (IsNonNil (Const(32|64) [c])) => (ConstBool [c != 0]) (IsNonNil (Addr _) ) => (ConstBool [true]) (IsNonNil (Convert (Addr _) _)) => (ConstBool [true]) (IsNonNil (LocalAddr _ _)) => (ConstBool [true]) // Inline small or disjoint runtime.memmove calls with constant length. // See the comment in op Move in genericOps.go for discussion of the type. // // Note that we've lost any knowledge of the type and alignment requirements // of the source and destination. We only know the size, and that the type // contains no pointers. // The type of the move is not necessarily v.Args[0].Type().Elem()! // See issue 55122 for details. // // Because expand calls runs after prove, constants useful to this pattern may not appear. // Both versions need to exist; the memory and register variants. // // Match post-expansion calls, memory version. (SelectN [0] call:(StaticCall {sym} s1:(Store _ (Const(64|32) [sz]) s2:(Store _ src s3:(Store {t} _ dst mem))))) && sz >= 0 && isSameCall(sym, "runtime.memmove") && s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1 && isInlinableMemmove(dst, src, int64(sz), config) && clobber(s1, s2, s3, call) => (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem) // Match post-expansion calls, register version. (SelectN [0] call:(StaticCall {sym} dst src (Const(64|32) [sz]) mem)) && sz >= 0 && call.Uses == 1 // this will exclude all calls with results && isSameCall(sym, "runtime.memmove") && isInlinableMemmove(dst, src, int64(sz), config) && clobber(call) => (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem) // Match pre-expansion calls. (SelectN [0] call:(StaticLECall {sym} dst src (Const(64|32) [sz]) mem)) && sz >= 0 && call.Uses == 1 // this will exclude all calls with results && isSameCall(sym, "runtime.memmove") && isInlinableMemmove(dst, src, int64(sz), config) && clobber(call) => (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem) // De-virtualize late-expanded interface calls into late-expanded static calls. (InterLECall [argsize] {auxCall} (Addr {fn} (SB)) ___) => devirtLECall(v, fn.(*obj.LSym)) // Move and Zero optimizations. // Move source and destination may overlap. // Convert Moves into Zeros when the source is known to be zeros. (Move {t} [n] dst1 src mem:(Zero {t} [n] dst2 _)) && isSamePtr(src, dst2) => (Zero {t} [n] dst1 mem) (Move {t} [n] dst1 src mem:(VarDef (Zero {t} [n] dst0 _))) && isSamePtr(src, dst0) => (Zero {t} [n] dst1 mem) (Move {t} [n] dst (Addr {sym} (SB)) mem) && symIsROZero(sym) => (Zero {t} [n] dst mem) // Don't Store to variables that are about to be overwritten by Move/Zero. (Zero {t1} [n] p1 store:(Store {t2} (OffPtr [o2] p2) _ mem)) && isSamePtr(p1, p2) && store.Uses == 1 && n >= o2 + t2.Size() && clobber(store) => (Zero {t1} [n] p1 mem) (Move {t1} [n] dst1 src1 store:(Store {t2} op:(OffPtr [o2] dst2) _ mem)) && isSamePtr(dst1, dst2) && store.Uses == 1 && n >= o2 + t2.Size() && disjoint(src1, n, op, t2.Size()) && clobber(store) => (Move {t1} [n] dst1 src1 mem) // Don't Move to variables that are immediately completely overwritten. (Zero {t} [n] dst1 move:(Move {t} [n] dst2 _ mem)) && move.Uses == 1 && isSamePtr(dst1, dst2) && clobber(move) => (Zero {t} [n] dst1 mem) (Move {t} [n] dst1 src1 move:(Move {t} [n] dst2 _ mem)) && move.Uses == 1 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) && clobber(move) => (Move {t} [n] dst1 src1 mem) (Zero {t} [n] dst1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem))) && move.Uses == 1 && vardef.Uses == 1 && isSamePtr(dst1, dst2) && clobber(move, vardef) => (Zero {t} [n] dst1 (VarDef {x} mem)) (Move {t} [n] dst1 src1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem))) && move.Uses == 1 && vardef.Uses == 1 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) && clobber(move, vardef) => (Move {t} [n] dst1 src1 (VarDef {x} mem)) (Store {t1} op1:(OffPtr [o1] p1) d1 m2:(Store {t2} op2:(OffPtr [0] p2) d2 m3:(Move [n] p3 _ mem))) && m2.Uses == 1 && m3.Uses == 1 && o1 == t2.Size() && n == t2.Size() + t1.Size() && isSamePtr(p1, p2) && isSamePtr(p2, p3) && clobber(m2, m3) => (Store {t1} op1 d1 (Store {t2} op2 d2 mem)) (Store {t1} op1:(OffPtr [o1] p1) d1 m2:(Store {t2} op2:(OffPtr [o2] p2) d2 m3:(Store {t3} op3:(OffPtr [0] p3) d3 m4:(Move [n] p4 _ mem)))) && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && o2 == t3.Size() && o1-o2 == t2.Size() && n == t3.Size() + t2.Size() + t1.Size() && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && clobber(m2, m3, m4) => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem))) (Store {t1} op1:(OffPtr [o1] p1) d1 m2:(Store {t2} op2:(OffPtr [o2] p2) d2 m3:(Store {t3} op3:(OffPtr [o3] p3) d3 m4:(Store {t4} op4:(OffPtr [0] p4) d4 m5:(Move [n] p5 _ mem))))) && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1 && o3 == t4.Size() && o2-o3 == t3.Size() && o1-o2 == t2.Size() && n == t4.Size() + t3.Size() + t2.Size() + t1.Size() && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && clobber(m2, m3, m4, m5) => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem)))) // Don't Zero variables that are immediately completely overwritten // before being accessed. (Move {t} [n] dst1 src1 zero:(Zero {t} [n] dst2 mem)) && zero.Uses == 1 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) && clobber(zero) => (Move {t} [n] dst1 src1 mem) (Move {t} [n] dst1 src1 vardef:(VarDef {x} zero:(Zero {t} [n] dst2 mem))) && zero.Uses == 1 && vardef.Uses == 1 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) && clobber(zero, vardef) => (Move {t} [n] dst1 src1 (VarDef {x} mem)) (Store {t1} op1:(OffPtr [o1] p1) d1 m2:(Store {t2} op2:(OffPtr [0] p2) d2 m3:(Zero [n] p3 mem))) && m2.Uses == 1 && m3.Uses == 1 && o1 == t2.Size() && n == t2.Size() + t1.Size() && isSamePtr(p1, p2) && isSamePtr(p2, p3) && clobber(m2, m3) => (Store {t1} op1 d1 (Store {t2} op2 d2 mem)) (Store {t1} op1:(OffPtr [o1] p1) d1 m2:(Store {t2} op2:(OffPtr [o2] p2) d2 m3:(Store {t3} op3:(OffPtr [0] p3) d3 m4:(Zero [n] p4 mem)))) && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && o2 == t3.Size() && o1-o2 == t2.Size() && n == t3.Size() + t2.Size() + t1.Size() && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && clobber(m2, m3, m4) => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem))) (Store {t1} op1:(OffPtr [o1] p1) d1 m2:(Store {t2} op2:(OffPtr [o2] p2) d2 m3:(Store {t3} op3:(OffPtr [o3] p3) d3 m4:(Store {t4} op4:(OffPtr [0] p4) d4 m5:(Zero [n] p5 mem))))) && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1 && o3 == t4.Size() && o2-o3 == t3.Size() && o1-o2 == t2.Size() && n == t4.Size() + t3.Size() + t2.Size() + t1.Size() && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && clobber(m2, m3, m4, m5) => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem)))) // Don't Move from memory if the values are likely to already be // in registers. (Move {t1} [n] dst p1 mem:(Store {t2} op2:(OffPtr [o2] p2) d1 (Store {t3} op3:(OffPtr [0] p3) d2 _))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && t2.Alignment() <= t1.Alignment() && t3.Alignment() <= t1.Alignment() && registerizable(b, t2) && registerizable(b, t3) && o2 == t3.Size() && n == t2.Size() + t3.Size() => (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [0] dst) d2 mem)) (Move {t1} [n] dst p1 mem:(Store {t2} op2:(OffPtr [o2] p2) d1 (Store {t3} op3:(OffPtr [o3] p3) d2 (Store {t4} op4:(OffPtr [0] p4) d3 _)))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && t2.Alignment() <= t1.Alignment() && t3.Alignment() <= t1.Alignment() && t4.Alignment() <= t1.Alignment() && registerizable(b, t2) && registerizable(b, t3) && registerizable(b, t4) && o3 == t4.Size() && o2-o3 == t3.Size() && n == t2.Size() + t3.Size() + t4.Size() => (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [o3] dst) d2 (Store {t4} (OffPtr [0] dst) d3 mem))) (Move {t1} [n] dst p1 mem:(Store {t2} op2:(OffPtr [o2] p2) d1 (Store {t3} op3:(OffPtr [o3] p3) d2 (Store {t4} op4:(OffPtr [o4] p4) d3 (Store {t5} op5:(OffPtr [0] p5) d4 _))))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && t2.Alignment() <= t1.Alignment() && t3.Alignment() <= t1.Alignment() && t4.Alignment() <= t1.Alignment() && t5.Alignment() <= t1.Alignment() && registerizable(b, t2) && registerizable(b, t3) && registerizable(b, t4) && registerizable(b, t5) && o4 == t5.Size() && o3-o4 == t4.Size() && o2-o3 == t3.Size() && n == t2.Size() + t3.Size() + t4.Size() + t5.Size() => (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [o3] dst) d2 (Store {t4} (OffPtr [o4] dst) d3 (Store {t5} (OffPtr [0] dst) d4 mem)))) // Same thing but with VarDef in the middle. (Move {t1} [n] dst p1 mem:(VarDef (Store {t2} op2:(OffPtr [o2] p2) d1 (Store {t3} op3:(OffPtr [0] p3) d2 _)))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && t2.Alignment() <= t1.Alignment() && t3.Alignment() <= t1.Alignment() && registerizable(b, t2) && registerizable(b, t3) && o2 == t3.Size() && n == t2.Size() + t3.Size() => (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [0] dst) d2 mem)) (Move {t1} [n] dst p1 mem:(VarDef (Store {t2} op2:(OffPtr [o2] p2) d1 (Store {t3} op3:(OffPtr [o3] p3) d2 (Store {t4} op4:(OffPtr [0] p4) d3 _))))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && t2.Alignment() <= t1.Alignment() && t3.Alignment() <= t1.Alignment() && t4.Alignment() <= t1.Alignment() && registerizable(b, t2) && registerizable(b, t3) && registerizable(b, t4) && o3 == t4.Size() && o2-o3 == t3.Size() && n == t2.Size() + t3.Size() + t4.Size() => (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [o3] dst) d2 (Store {t4} (OffPtr [0] dst) d3 mem))) (Move {t1} [n] dst p1 mem:(VarDef (Store {t2} op2:(OffPtr [o2] p2) d1 (Store {t3} op3:(OffPtr [o3] p3) d2 (Store {t4} op4:(OffPtr [o4] p4) d3 (Store {t5} op5:(OffPtr [0] p5) d4 _)))))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && t2.Alignment() <= t1.Alignment() && t3.Alignment() <= t1.Alignment() && t4.Alignment() <= t1.Alignment() && t5.Alignment() <= t1.Alignment() && registerizable(b, t2) && registerizable(b, t3) && registerizable(b, t4) && registerizable(b, t5) && o4 == t5.Size() && o3-o4 == t4.Size() && o2-o3 == t3.Size() && n == t2.Size() + t3.Size() + t4.Size() + t5.Size() => (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [o3] dst) d2 (Store {t4} (OffPtr [o4] dst) d3 (Store {t5} (OffPtr [0] dst) d4 mem)))) // Prefer to Zero and Store than to Move. (Move {t1} [n] dst p1 mem:(Store {t2} op2:(OffPtr [o2] p2) d1 (Zero {t3} [n] p3 _))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && t2.Alignment() <= t1.Alignment() && t3.Alignment() <= t1.Alignment() && registerizable(b, t2) && n >= o2 + t2.Size() => (Store {t2} (OffPtr [o2] dst) d1 (Zero {t1} [n] dst mem)) (Move {t1} [n] dst p1 mem:(Store {t2} (OffPtr [o2] p2) d1 (Store {t3} (OffPtr [o3] p3) d2 (Zero {t4} [n] p4 _)))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && t2.Alignment() <= t1.Alignment() && t3.Alignment() <= t1.Alignment() && t4.Alignment() <= t1.Alignment() && registerizable(b, t2) && registerizable(b, t3) && n >= o2 + t2.Size() && n >= o3 + t3.Size() => (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [o3] dst) d2 (Zero {t1} [n] dst mem))) (Move {t1} [n] dst p1 mem:(Store {t2} (OffPtr [o2] p2) d1 (Store {t3} (OffPtr [o3] p3) d2 (Store {t4} (OffPtr [o4] p4) d3 (Zero {t5} [n] p5 _))))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && t2.Alignment() <= t1.Alignment() && t3.Alignment() <= t1.Alignment() && t4.Alignment() <= t1.Alignment() && t5.Alignment() <= t1.Alignment() && registerizable(b, t2) && registerizable(b, t3) && registerizable(b, t4) && n >= o2 + t2.Size() && n >= o3 + t3.Size() && n >= o4 + t4.Size() => (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [o3] dst) d2 (Store {t4} (OffPtr [o4] dst) d3 (Zero {t1} [n] dst mem)))) (Move {t1} [n] dst p1 mem:(Store {t2} (OffPtr [o2] p2) d1 (Store {t3} (OffPtr [o3] p3) d2 (Store {t4} (OffPtr [o4] p4) d3 (Store {t5} (OffPtr [o5] p5) d4 (Zero {t6} [n] p6 _)))))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6) && t2.Alignment() <= t1.Alignment() && t3.Alignment() <= t1.Alignment() && t4.Alignment() <= t1.Alignment() && t5.Alignment() <= t1.Alignment() && t6.Alignment() <= t1.Alignment() && registerizable(b, t2) && registerizable(b, t3) && registerizable(b, t4) && registerizable(b, t5) && n >= o2 + t2.Size() && n >= o3 + t3.Size() && n >= o4 + t4.Size() && n >= o5 + t5.Size() => (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [o3] dst) d2 (Store {t4} (OffPtr [o4] dst) d3 (Store {t5} (OffPtr [o5] dst) d4 (Zero {t1} [n] dst mem))))) (Move {t1} [n] dst p1 mem:(VarDef (Store {t2} op2:(OffPtr [o2] p2) d1 (Zero {t3} [n] p3 _)))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && t2.Alignment() <= t1.Alignment() && t3.Alignment() <= t1.Alignment() && registerizable(b, t2) && n >= o2 + t2.Size() => (Store {t2} (OffPtr [o2] dst) d1 (Zero {t1} [n] dst mem)) (Move {t1} [n] dst p1 mem:(VarDef (Store {t2} (OffPtr [o2] p2) d1 (Store {t3} (OffPtr [o3] p3) d2 (Zero {t4} [n] p4 _))))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && t2.Alignment() <= t1.Alignment() && t3.Alignment() <= t1.Alignment() && t4.Alignment() <= t1.Alignment() && registerizable(b, t2) && registerizable(b, t3) && n >= o2 + t2.Size() && n >= o3 + t3.Size() => (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [o3] dst) d2 (Zero {t1} [n] dst mem))) (Move {t1} [n] dst p1 mem:(VarDef (Store {t2} (OffPtr [o2] p2) d1 (Store {t3} (OffPtr [o3] p3) d2 (Store {t4} (OffPtr [o4] p4) d3 (Zero {t5} [n] p5 _)))))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && t2.Alignment() <= t1.Alignment() && t3.Alignment() <= t1.Alignment() && t4.Alignment() <= t1.Alignment() && t5.Alignment() <= t1.Alignment() && registerizable(b, t2) && registerizable(b, t3) && registerizable(b, t4) && n >= o2 + t2.Size() && n >= o3 + t3.Size() && n >= o4 + t4.Size() => (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [o3] dst) d2 (Store {t4} (OffPtr [o4] dst) d3 (Zero {t1} [n] dst mem)))) (Move {t1} [n] dst p1 mem:(VarDef (Store {t2} (OffPtr [o2] p2) d1 (Store {t3} (OffPtr [o3] p3) d2 (Store {t4} (OffPtr [o4] p4) d3 (Store {t5} (OffPtr [o5] p5) d4 (Zero {t6} [n] p6 _))))))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6) && t2.Alignment() <= t1.Alignment() && t3.Alignment() <= t1.Alignment() && t4.Alignment() <= t1.Alignment() && t5.Alignment() <= t1.Alignment() && t6.Alignment() <= t1.Alignment() && registerizable(b, t2) && registerizable(b, t3) && registerizable(b, t4) && registerizable(b, t5) && n >= o2 + t2.Size() && n >= o3 + t3.Size() && n >= o4 + t4.Size() && n >= o5 + t5.Size() => (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [o3] dst) d2 (Store {t4} (OffPtr [o4] dst) d3 (Store {t5} (OffPtr [o5] dst) d4 (Zero {t1} [n] dst mem))))) (SelectN [0] call:(StaticLECall {sym} a x)) && needRaceCleanup(sym, call) && clobber(call) => x (SelectN [0] call:(StaticLECall {sym} x)) && needRaceCleanup(sym, call) && clobber(call) => x // When rewriting append to growslice, we use as the new length the result of // growslice so that we don't have to spill/restore the new length around the growslice call. // The exception here is that if the new length is a constant, avoiding spilling it // is pointless and its constantness is sometimes useful for subsequent optimizations. // See issue 56440. // Note there are 2 rules here, one for the pre-decomposed []T result and one for // the post-decomposed (*T,int,int) result. (The latter is generated after call expansion.) (SliceLen (SelectN [0] (StaticLECall {sym} _ newLen:(Const(64|32)) _ _ _ _))) && isSameCall(sym, "runtime.growslice") => newLen (SelectN [1] (StaticCall {sym} _ newLen:(Const(64|32)) _ _ _ _)) && v.Type.IsInteger() && isSameCall(sym, "runtime.growslice") => newLen // Collapse moving A -> B -> C into just A -> C. // Later passes (deadstore, elim unread auto) will remove the A -> B move, if possible. // This happens most commonly when B is an autotmp inserted earlier // during compilation to ensure correctness. // Take care that overlapping moves are preserved. // Restrict this optimization to the stack, to avoid duplicating loads from the heap; // see CL 145208 for discussion. (Move {t1} [s] dst tmp1 midmem:(Move {t2} [s] tmp2 src _)) && t1.Compare(t2) == types.CMPeq && isSamePtr(tmp1, tmp2) && isStackPtr(src) && !isVolatile(src) && disjoint(src, s, tmp2, s) && (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config)) => (Move {t1} [s] dst src midmem) // Same, but for large types that require VarDefs. (Move {t1} [s] dst tmp1 midmem:(VarDef (Move {t2} [s] tmp2 src _))) && t1.Compare(t2) == types.CMPeq && isSamePtr(tmp1, tmp2) && isStackPtr(src) && !isVolatile(src) && disjoint(src, s, tmp2, s) && (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config)) => (Move {t1} [s] dst src midmem) // Don't zero the same bits twice. (Zero {t} [s] dst1 zero:(Zero {t} [s] dst2 _)) && isSamePtr(dst1, dst2) => zero (Zero {t} [s] dst1 vardef:(VarDef (Zero {t} [s] dst2 _))) && isSamePtr(dst1, dst2) => vardef // Elide self-moves. This only happens rarely (e.g test/fixedbugs/bug277.go). // However, this rule is needed to prevent the previous rule from looping forever in such cases. (Move dst src mem) && isSamePtr(dst, src) => mem // Constant rotate detection. ((Add64|Or64|Xor64) (Lsh64x64 x z:(Const64 [c])) (Rsh64Ux64 x (Const64 [d]))) && c < 64 && d == 64-c && canRotate(config, 64) => (RotateLeft64 x z) ((Add32|Or32|Xor32) (Lsh32x64 x z:(Const64 [c])) (Rsh32Ux64 x (Const64 [d]))) && c < 32 && d == 32-c && canRotate(config, 32) => (RotateLeft32 x z) ((Add16|Or16|Xor16) (Lsh16x64 x z:(Const64 [c])) (Rsh16Ux64 x (Const64 [d]))) && c < 16 && d == 16-c && canRotate(config, 16) => (RotateLeft16 x z) ((Add8|Or8|Xor8) (Lsh8x64 x z:(Const64 [c])) (Rsh8Ux64 x (Const64 [d]))) && c < 8 && d == 8-c && canRotate(config, 8) => (RotateLeft8 x z) // Non-constant rotate detection. // We use shiftIsBounded to make sure that neither of the shifts are >64. // Note: these rules are subtle when the shift amounts are 0/64, as Go shifts // are different from most native shifts. But it works out. ((Add64|Or64|Xor64) left:(Lsh64x64 x y) right:(Rsh64Ux64 x (Sub64 (Const64 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y) ((Add64|Or64|Xor64) left:(Lsh64x32 x y) right:(Rsh64Ux32 x (Sub32 (Const32 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y) ((Add64|Or64|Xor64) left:(Lsh64x16 x y) right:(Rsh64Ux16 x (Sub16 (Const16 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y) ((Add64|Or64|Xor64) left:(Lsh64x8 x y) right:(Rsh64Ux8 x (Sub8 (Const8 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y) ((Add64|Or64|Xor64) right:(Rsh64Ux64 x y) left:(Lsh64x64 x z:(Sub64 (Const64 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z) ((Add64|Or64|Xor64) right:(Rsh64Ux32 x y) left:(Lsh64x32 x z:(Sub32 (Const32 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z) ((Add64|Or64|Xor64) right:(Rsh64Ux16 x y) left:(Lsh64x16 x z:(Sub16 (Const16 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z) ((Add64|Or64|Xor64) right:(Rsh64Ux8 x y) left:(Lsh64x8 x z:(Sub8 (Const8 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z) ((Add32|Or32|Xor32) left:(Lsh32x64 x y) right:(Rsh32Ux64 x (Sub64 (Const64 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y) ((Add32|Or32|Xor32) left:(Lsh32x32 x y) right:(Rsh32Ux32 x (Sub32 (Const32 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y) ((Add32|Or32|Xor32) left:(Lsh32x16 x y) right:(Rsh32Ux16 x (Sub16 (Const16 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y) ((Add32|Or32|Xor32) left:(Lsh32x8 x y) right:(Rsh32Ux8 x (Sub8 (Const8 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y) ((Add32|Or32|Xor32) right:(Rsh32Ux64 x y) left:(Lsh32x64 x z:(Sub64 (Const64 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z) ((Add32|Or32|Xor32) right:(Rsh32Ux32 x y) left:(Lsh32x32 x z:(Sub32 (Const32 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z) ((Add32|Or32|Xor32) right:(Rsh32Ux16 x y) left:(Lsh32x16 x z:(Sub16 (Const16 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z) ((Add32|Or32|Xor32) right:(Rsh32Ux8 x y) left:(Lsh32x8 x z:(Sub8 (Const8 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z) ((Add16|Or16|Xor16) left:(Lsh16x64 x y) right:(Rsh16Ux64 x (Sub64 (Const64 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y) ((Add16|Or16|Xor16) left:(Lsh16x32 x y) right:(Rsh16Ux32 x (Sub32 (Const32 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y) ((Add16|Or16|Xor16) left:(Lsh16x16 x y) right:(Rsh16Ux16 x (Sub16 (Const16 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y) ((Add16|Or16|Xor16) left:(Lsh16x8 x y) right:(Rsh16Ux8 x (Sub8 (Const8 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y) ((Add16|Or16|Xor16) right:(Rsh16Ux64 x y) left:(Lsh16x64 x z:(Sub64 (Const64 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z) ((Add16|Or16|Xor16) right:(Rsh16Ux32 x y) left:(Lsh16x32 x z:(Sub32 (Const32 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z) ((Add16|Or16|Xor16) right:(Rsh16Ux16 x y) left:(Lsh16x16 x z:(Sub16 (Const16 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z) ((Add16|Or16|Xor16) right:(Rsh16Ux8 x y) left:(Lsh16x8 x z:(Sub8 (Const8 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z) ((Add8|Or8|Xor8) left:(Lsh8x64 x y) right:(Rsh8Ux64 x (Sub64 (Const64 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y) ((Add8|Or8|Xor8) left:(Lsh8x32 x y) right:(Rsh8Ux32 x (Sub32 (Const32 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y) ((Add8|Or8|Xor8) left:(Lsh8x16 x y) right:(Rsh8Ux16 x (Sub16 (Const16 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y) ((Add8|Or8|Xor8) left:(Lsh8x8 x y) right:(Rsh8Ux8 x (Sub8 (Const8 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y) ((Add8|Or8|Xor8) right:(Rsh8Ux64 x y) left:(Lsh8x64 x z:(Sub64 (Const64 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z) ((Add8|Or8|Xor8) right:(Rsh8Ux32 x y) left:(Lsh8x32 x z:(Sub32 (Const32 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z) ((Add8|Or8|Xor8) right:(Rsh8Ux16 x y) left:(Lsh8x16 x z:(Sub16 (Const16 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z) ((Add8|Or8|Xor8) right:(Rsh8Ux8 x y) left:(Lsh8x8 x z:(Sub8 (Const8 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z) // Rotating by y&c, with c a mask that doesn't change the bottom bits, is the same as rotating by y. (RotateLeft64 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&63 == 63 => (RotateLeft64 x y) (RotateLeft32 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&31 == 31 => (RotateLeft32 x y) (RotateLeft16 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&15 == 15 => (RotateLeft16 x y) (RotateLeft8 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&7 == 7 => (RotateLeft8 x y) // Rotating by -(y&c), with c a mask that doesn't change the bottom bits, is the same as rotating by -y. (RotateLeft64 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&63 == 63 => (RotateLeft64 x (Neg(64|32|16|8) y)) (RotateLeft32 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&31 == 31 => (RotateLeft32 x (Neg(64|32|16|8) y)) (RotateLeft16 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&15 == 15 => (RotateLeft16 x (Neg(64|32|16|8) y)) (RotateLeft8 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&7 == 7 => (RotateLeft8 x (Neg(64|32|16|8) y)) // Rotating by y+c, with c a multiple of the value width, is the same as rotating by y. (RotateLeft64 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&63 == 0 => (RotateLeft64 x y) (RotateLeft32 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&31 == 0 => (RotateLeft32 x y) (RotateLeft16 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&15 == 0 => (RotateLeft16 x y) (RotateLeft8 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&7 == 0 => (RotateLeft8 x y) // Rotating by c-y, with c a multiple of the value width, is the same as rotating by -y. (RotateLeft64 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&63 == 0 => (RotateLeft64 x (Neg(64|32|16|8) y)) (RotateLeft32 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&31 == 0 => (RotateLeft32 x (Neg(64|32|16|8) y)) (RotateLeft16 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&15 == 0 => (RotateLeft16 x (Neg(64|32|16|8) y)) (RotateLeft8 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&7 == 0 => (RotateLeft8 x (Neg(64|32|16|8) y)) // Ensure we don't do Const64 rotates in a 32-bit system. (RotateLeft64 x (Const64 [c])) && config.PtrSize == 4 => (RotateLeft64 x (Const32 [int32(c)])) (RotateLeft32 x (Const64 [c])) && config.PtrSize == 4 => (RotateLeft32 x (Const32 [int32(c)])) (RotateLeft16 x (Const64 [c])) && config.PtrSize == 4 => (RotateLeft16 x (Const32 [int32(c)])) (RotateLeft8 x (Const64 [c])) && config.PtrSize == 4 => (RotateLeft8 x (Const32 [int32(c)])) // Rotating by c, then by d, is the same as rotating by c+d. // We're trading a rotate for an add, which seems generally a good choice. It is especially good when c and d are constants. // This rule is a bit tricky as c and d might be different widths. We handle only cases where they are the same width. (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 8 && d.Type.Size() == 8 => (RotateLeft(64|32|16|8) x (Add64 c d)) (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 4 && d.Type.Size() == 4 => (RotateLeft(64|32|16|8) x (Add32 c d)) (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 2 && d.Type.Size() == 2 => (RotateLeft(64|32|16|8) x (Add16 c d)) (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 1 && d.Type.Size() == 1 => (RotateLeft(64|32|16|8) x (Add8 c d)) // Loading constant values from dictionaries and itabs. (Load (OffPtr [off] (Addr {s} sb) ) _) && t.IsUintptr() && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb) (Load (OffPtr [off] (Convert (Addr {s} sb) _) ) _) && t.IsUintptr() && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb) (Load (OffPtr [off] (ITab (IMake (Addr {s} sb) _))) _) && t.IsUintptr() && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb) (Load (OffPtr [off] (ITab (IMake (Convert (Addr {s} sb) _) _))) _) && t.IsUintptr() && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb) // Loading constant values from runtime._type.hash. (Load (OffPtr [off] (Addr {sym} _) ) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)]) (Load (OffPtr [off] (Convert (Addr {sym} _) _) ) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)]) (Load (OffPtr [off] (ITab (IMake (Addr {sym} _) _))) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)]) (Load (OffPtr [off] (ITab (IMake (Convert (Addr {sym} _) _) _))) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)])