Source file src/cmd/compile/internal/liveness/plive.go

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Garbage collector liveness bitmap generation.
     6  
     7  // The command line flag -live causes this code to print debug information.
     8  // The levels are:
     9  //
    10  //	-live (aka -live=1): print liveness lists as code warnings at safe points
    11  //	-live=2: print an assembly listing with liveness annotations
    12  //
    13  // Each level includes the earlier output as well.
    14  
    15  package liveness
    16  
    17  import (
    18  	"fmt"
    19  	"os"
    20  	"sort"
    21  	"strings"
    22  
    23  	"cmd/compile/internal/abi"
    24  	"cmd/compile/internal/base"
    25  	"cmd/compile/internal/bitvec"
    26  	"cmd/compile/internal/ir"
    27  	"cmd/compile/internal/objw"
    28  	"cmd/compile/internal/reflectdata"
    29  	"cmd/compile/internal/ssa"
    30  	"cmd/compile/internal/typebits"
    31  	"cmd/compile/internal/types"
    32  	"cmd/internal/notsha256"
    33  	"cmd/internal/obj"
    34  	"cmd/internal/src"
    35  
    36  	rtabi "internal/abi"
    37  )
    38  
    39  // OpVarDef is an annotation for the liveness analysis, marking a place
    40  // where a complete initialization (definition) of a variable begins.
    41  // Since the liveness analysis can see initialization of single-word
    42  // variables quite easy, OpVarDef is only needed for multi-word
    43  // variables satisfying isfat(n.Type). For simplicity though, buildssa
    44  // emits OpVarDef regardless of variable width.
    45  //
    46  // An 'OpVarDef x' annotation in the instruction stream tells the liveness
    47  // analysis to behave as though the variable x is being initialized at that
    48  // point in the instruction stream. The OpVarDef must appear before the
    49  // actual (multi-instruction) initialization, and it must also appear after
    50  // any uses of the previous value, if any. For example, if compiling:
    51  //
    52  //	x = x[1:]
    53  //
    54  // it is important to generate code like:
    55  //
    56  //	base, len, cap = pieces of x[1:]
    57  //	OpVarDef x
    58  //	x = {base, len, cap}
    59  //
    60  // If instead the generated code looked like:
    61  //
    62  //	OpVarDef x
    63  //	base, len, cap = pieces of x[1:]
    64  //	x = {base, len, cap}
    65  //
    66  // then the liveness analysis would decide the previous value of x was
    67  // unnecessary even though it is about to be used by the x[1:] computation.
    68  // Similarly, if the generated code looked like:
    69  //
    70  //	base, len, cap = pieces of x[1:]
    71  //	x = {base, len, cap}
    72  //	OpVarDef x
    73  //
    74  // then the liveness analysis will not preserve the new value of x, because
    75  // the OpVarDef appears to have "overwritten" it.
    76  //
    77  // OpVarDef is a bit of a kludge to work around the fact that the instruction
    78  // stream is working on single-word values but the liveness analysis
    79  // wants to work on individual variables, which might be multi-word
    80  // aggregates. It might make sense at some point to look into letting
    81  // the liveness analysis work on single-word values as well, although
    82  // there are complications around interface values, slices, and strings,
    83  // all of which cannot be treated as individual words.
    84  
    85  // blockEffects summarizes the liveness effects on an SSA block.
    86  type blockEffects struct {
    87  	// Computed during Liveness.prologue using only the content of
    88  	// individual blocks:
    89  	//
    90  	//	uevar: upward exposed variables (used before set in block)
    91  	//	varkill: killed variables (set in block)
    92  	uevar   bitvec.BitVec
    93  	varkill bitvec.BitVec
    94  
    95  	// Computed during Liveness.solve using control flow information:
    96  	//
    97  	//	livein: variables live at block entry
    98  	//	liveout: variables live at block exit
    99  	livein  bitvec.BitVec
   100  	liveout bitvec.BitVec
   101  }
   102  
   103  // A collection of global state used by liveness analysis.
   104  type liveness struct {
   105  	fn         *ir.Func
   106  	f          *ssa.Func
   107  	vars       []*ir.Name
   108  	idx        map[*ir.Name]int32
   109  	stkptrsize int64
   110  
   111  	be []blockEffects
   112  
   113  	// allUnsafe indicates that all points in this function are
   114  	// unsafe-points.
   115  	allUnsafe bool
   116  	// unsafePoints bit i is set if Value ID i is an unsafe-point
   117  	// (preemption is not allowed). Only valid if !allUnsafe.
   118  	unsafePoints bitvec.BitVec
   119  	// unsafeBlocks bit i is set if Block ID i is an unsafe-point
   120  	// (preemption is not allowed on any end-of-block
   121  	// instructions). Only valid if !allUnsafe.
   122  	unsafeBlocks bitvec.BitVec
   123  
   124  	// An array with a bit vector for each safe point in the
   125  	// current Block during liveness.epilogue. Indexed in Value
   126  	// order for that block. Additionally, for the entry block
   127  	// livevars[0] is the entry bitmap. liveness.compact moves
   128  	// these to stackMaps.
   129  	livevars []bitvec.BitVec
   130  
   131  	// livenessMap maps from safe points (i.e., CALLs) to their
   132  	// liveness map indexes.
   133  	livenessMap Map
   134  	stackMapSet bvecSet
   135  	stackMaps   []bitvec.BitVec
   136  
   137  	cache progeffectscache
   138  
   139  	// partLiveArgs includes input arguments (PPARAM) that may
   140  	// be partially live. That is, it is considered live because
   141  	// a part of it is used, but we may not initialize all parts.
   142  	partLiveArgs map[*ir.Name]bool
   143  
   144  	doClobber     bool // Whether to clobber dead stack slots in this function.
   145  	noClobberArgs bool // Do not clobber function arguments
   146  }
   147  
   148  // Map maps from *ssa.Value to StackMapIndex.
   149  // Also keeps track of unsafe ssa.Values and ssa.Blocks.
   150  // (unsafe = can't be interrupted during GC.)
   151  type Map struct {
   152  	Vals         map[ssa.ID]objw.StackMapIndex
   153  	UnsafeVals   map[ssa.ID]bool
   154  	UnsafeBlocks map[ssa.ID]bool
   155  	// The set of live, pointer-containing variables at the DeferReturn
   156  	// call (only set when open-coded defers are used).
   157  	DeferReturn objw.StackMapIndex
   158  }
   159  
   160  func (m *Map) reset() {
   161  	if m.Vals == nil {
   162  		m.Vals = make(map[ssa.ID]objw.StackMapIndex)
   163  		m.UnsafeVals = make(map[ssa.ID]bool)
   164  		m.UnsafeBlocks = make(map[ssa.ID]bool)
   165  	} else {
   166  		for k := range m.Vals {
   167  			delete(m.Vals, k)
   168  		}
   169  		for k := range m.UnsafeVals {
   170  			delete(m.UnsafeVals, k)
   171  		}
   172  		for k := range m.UnsafeBlocks {
   173  			delete(m.UnsafeBlocks, k)
   174  		}
   175  	}
   176  	m.DeferReturn = objw.StackMapDontCare
   177  }
   178  
   179  func (m *Map) set(v *ssa.Value, i objw.StackMapIndex) {
   180  	m.Vals[v.ID] = i
   181  }
   182  func (m *Map) setUnsafeVal(v *ssa.Value) {
   183  	m.UnsafeVals[v.ID] = true
   184  }
   185  func (m *Map) setUnsafeBlock(b *ssa.Block) {
   186  	m.UnsafeBlocks[b.ID] = true
   187  }
   188  
   189  func (m Map) Get(v *ssa.Value) objw.StackMapIndex {
   190  	// If v isn't in the map, then it's a "don't care".
   191  	if idx, ok := m.Vals[v.ID]; ok {
   192  		return idx
   193  	}
   194  	return objw.StackMapDontCare
   195  }
   196  func (m Map) GetUnsafe(v *ssa.Value) bool {
   197  	// default is safe
   198  	return m.UnsafeVals[v.ID]
   199  }
   200  func (m Map) GetUnsafeBlock(b *ssa.Block) bool {
   201  	// default is safe
   202  	return m.UnsafeBlocks[b.ID]
   203  }
   204  
   205  type progeffectscache struct {
   206  	retuevar    []int32
   207  	tailuevar   []int32
   208  	initialized bool
   209  }
   210  
   211  // shouldTrack reports whether the liveness analysis
   212  // should track the variable n.
   213  // We don't care about variables that have no pointers,
   214  // nor do we care about non-local variables,
   215  // nor do we care about empty structs (handled by the pointer check),
   216  // nor do we care about the fake PAUTOHEAP variables.
   217  func shouldTrack(n *ir.Name) bool {
   218  	return (n.Class == ir.PAUTO && n.Esc() != ir.EscHeap || n.Class == ir.PPARAM || n.Class == ir.PPARAMOUT) && n.Type().HasPointers()
   219  }
   220  
   221  // getvariables returns the list of on-stack variables that we need to track
   222  // and a map for looking up indices by *Node.
   223  func getvariables(fn *ir.Func) ([]*ir.Name, map[*ir.Name]int32) {
   224  	var vars []*ir.Name
   225  	for _, n := range fn.Dcl {
   226  		if shouldTrack(n) {
   227  			vars = append(vars, n)
   228  		}
   229  	}
   230  	idx := make(map[*ir.Name]int32, len(vars))
   231  	for i, n := range vars {
   232  		idx[n] = int32(i)
   233  	}
   234  	return vars, idx
   235  }
   236  
   237  func (lv *liveness) initcache() {
   238  	if lv.cache.initialized {
   239  		base.Fatalf("liveness cache initialized twice")
   240  		return
   241  	}
   242  	lv.cache.initialized = true
   243  
   244  	for i, node := range lv.vars {
   245  		switch node.Class {
   246  		case ir.PPARAM:
   247  			// A return instruction with a p.to is a tail return, which brings
   248  			// the stack pointer back up (if it ever went down) and then jumps
   249  			// to a new function entirely. That form of instruction must read
   250  			// all the parameters for correctness, and similarly it must not
   251  			// read the out arguments - they won't be set until the new
   252  			// function runs.
   253  			lv.cache.tailuevar = append(lv.cache.tailuevar, int32(i))
   254  
   255  		case ir.PPARAMOUT:
   256  			// All results are live at every return point.
   257  			// Note that this point is after escaping return values
   258  			// are copied back to the stack using their PAUTOHEAP references.
   259  			lv.cache.retuevar = append(lv.cache.retuevar, int32(i))
   260  		}
   261  	}
   262  }
   263  
   264  // A liveEffect is a set of flags that describe an instruction's
   265  // liveness effects on a variable.
   266  //
   267  // The possible flags are:
   268  //
   269  //	uevar - used by the instruction
   270  //	varkill - killed by the instruction (set)
   271  //
   272  // A kill happens after the use (for an instruction that updates a value, for example).
   273  type liveEffect int
   274  
   275  const (
   276  	uevar liveEffect = 1 << iota
   277  	varkill
   278  )
   279  
   280  // valueEffects returns the index of a variable in lv.vars and the
   281  // liveness effects v has on that variable.
   282  // If v does not affect any tracked variables, it returns -1, 0.
   283  func (lv *liveness) valueEffects(v *ssa.Value) (int32, liveEffect) {
   284  	n, e := affectedVar(v)
   285  	if e == 0 || n == nil { // cheapest checks first
   286  		return -1, 0
   287  	}
   288  	// AllocFrame has dropped unused variables from
   289  	// lv.fn.Func.Dcl, but they might still be referenced by
   290  	// OpVarFoo pseudo-ops. Ignore them to prevent "lost track of
   291  	// variable" ICEs (issue 19632).
   292  	switch v.Op {
   293  	case ssa.OpVarDef, ssa.OpVarLive, ssa.OpKeepAlive:
   294  		if !n.Used() {
   295  			return -1, 0
   296  		}
   297  	}
   298  
   299  	if n.Class == ir.PPARAM && !n.Addrtaken() && n.Type().Size() > int64(types.PtrSize) {
   300  		// Only aggregate-typed arguments that are not address-taken can be
   301  		// partially live.
   302  		lv.partLiveArgs[n] = true
   303  	}
   304  
   305  	var effect liveEffect
   306  	// Read is a read, obviously.
   307  	//
   308  	// Addr is a read also, as any subsequent holder of the pointer must be able
   309  	// to see all the values (including initialization) written so far.
   310  	// This also prevents a variable from "coming back from the dead" and presenting
   311  	// stale pointers to the garbage collector. See issue 28445.
   312  	if e&(ssa.SymRead|ssa.SymAddr) != 0 {
   313  		effect |= uevar
   314  	}
   315  	if e&ssa.SymWrite != 0 && (!isfat(n.Type()) || v.Op == ssa.OpVarDef) {
   316  		effect |= varkill
   317  	}
   318  
   319  	if effect == 0 {
   320  		return -1, 0
   321  	}
   322  
   323  	if pos, ok := lv.idx[n]; ok {
   324  		return pos, effect
   325  	}
   326  	return -1, 0
   327  }
   328  
   329  // affectedVar returns the *ir.Name node affected by v.
   330  func affectedVar(v *ssa.Value) (*ir.Name, ssa.SymEffect) {
   331  	// Special cases.
   332  	switch v.Op {
   333  	case ssa.OpLoadReg:
   334  		n, _ := ssa.AutoVar(v.Args[0])
   335  		return n, ssa.SymRead
   336  	case ssa.OpStoreReg:
   337  		n, _ := ssa.AutoVar(v)
   338  		return n, ssa.SymWrite
   339  
   340  	case ssa.OpArgIntReg:
   341  		// This forces the spill slot for the register to be live at function entry.
   342  		// one of the following holds for a function F with pointer-valued register arg X:
   343  		//  0. No GC (so an uninitialized spill slot is okay)
   344  		//  1. GC at entry of F.  GC is precise, but the spills around morestack initialize X's spill slot
   345  		//  2. Stack growth at entry of F.  Same as GC.
   346  		//  3. GC occurs within F itself.  This has to be from preemption, and thus GC is conservative.
   347  		//     a. X is in a register -- then X is seen, and the spill slot is also scanned conservatively.
   348  		//     b. X is spilled -- the spill slot is initialized, and scanned conservatively
   349  		//     c. X is not live -- the spill slot is scanned conservatively, and it may contain X from an earlier spill.
   350  		//  4. GC within G, transitively called from F
   351  		//    a. X is live at call site, therefore is spilled, to its spill slot (which is live because of subsequent LoadReg).
   352  		//    b. X is not live at call site -- but neither is its spill slot.
   353  		n, _ := ssa.AutoVar(v)
   354  		return n, ssa.SymRead
   355  
   356  	case ssa.OpVarLive:
   357  		return v.Aux.(*ir.Name), ssa.SymRead
   358  	case ssa.OpVarDef:
   359  		return v.Aux.(*ir.Name), ssa.SymWrite
   360  	case ssa.OpKeepAlive:
   361  		n, _ := ssa.AutoVar(v.Args[0])
   362  		return n, ssa.SymRead
   363  	}
   364  
   365  	e := v.Op.SymEffect()
   366  	if e == 0 {
   367  		return nil, 0
   368  	}
   369  
   370  	switch a := v.Aux.(type) {
   371  	case nil, *obj.LSym:
   372  		// ok, but no node
   373  		return nil, e
   374  	case *ir.Name:
   375  		return a, e
   376  	default:
   377  		base.Fatalf("weird aux: %s", v.LongString())
   378  		return nil, e
   379  	}
   380  }
   381  
   382  type livenessFuncCache struct {
   383  	be          []blockEffects
   384  	livenessMap Map
   385  }
   386  
   387  // Constructs a new liveness structure used to hold the global state of the
   388  // liveness computation. The cfg argument is a slice of *BasicBlocks and the
   389  // vars argument is a slice of *Nodes.
   390  func newliveness(fn *ir.Func, f *ssa.Func, vars []*ir.Name, idx map[*ir.Name]int32, stkptrsize int64) *liveness {
   391  	lv := &liveness{
   392  		fn:         fn,
   393  		f:          f,
   394  		vars:       vars,
   395  		idx:        idx,
   396  		stkptrsize: stkptrsize,
   397  	}
   398  
   399  	// Significant sources of allocation are kept in the ssa.Cache
   400  	// and reused. Surprisingly, the bit vectors themselves aren't
   401  	// a major source of allocation, but the liveness maps are.
   402  	if lc, _ := f.Cache.Liveness.(*livenessFuncCache); lc == nil {
   403  		// Prep the cache so liveness can fill it later.
   404  		f.Cache.Liveness = new(livenessFuncCache)
   405  	} else {
   406  		if cap(lc.be) >= f.NumBlocks() {
   407  			lv.be = lc.be[:f.NumBlocks()]
   408  		}
   409  		lv.livenessMap = Map{
   410  			Vals:         lc.livenessMap.Vals,
   411  			UnsafeVals:   lc.livenessMap.UnsafeVals,
   412  			UnsafeBlocks: lc.livenessMap.UnsafeBlocks,
   413  			DeferReturn:  objw.StackMapDontCare,
   414  		}
   415  		lc.livenessMap.Vals = nil
   416  		lc.livenessMap.UnsafeVals = nil
   417  		lc.livenessMap.UnsafeBlocks = nil
   418  	}
   419  	if lv.be == nil {
   420  		lv.be = make([]blockEffects, f.NumBlocks())
   421  	}
   422  
   423  	nblocks := int32(len(f.Blocks))
   424  	nvars := int32(len(vars))
   425  	bulk := bitvec.NewBulk(nvars, nblocks*7)
   426  	for _, b := range f.Blocks {
   427  		be := lv.blockEffects(b)
   428  
   429  		be.uevar = bulk.Next()
   430  		be.varkill = bulk.Next()
   431  		be.livein = bulk.Next()
   432  		be.liveout = bulk.Next()
   433  	}
   434  	lv.livenessMap.reset()
   435  
   436  	lv.markUnsafePoints()
   437  
   438  	lv.partLiveArgs = make(map[*ir.Name]bool)
   439  
   440  	lv.enableClobber()
   441  
   442  	return lv
   443  }
   444  
   445  func (lv *liveness) blockEffects(b *ssa.Block) *blockEffects {
   446  	return &lv.be[b.ID]
   447  }
   448  
   449  // Generates live pointer value maps for arguments and local variables. The
   450  // this argument and the in arguments are always assumed live. The vars
   451  // argument is a slice of *Nodes.
   452  func (lv *liveness) pointerMap(liveout bitvec.BitVec, vars []*ir.Name, args, locals bitvec.BitVec) {
   453  	for i := int32(0); ; i++ {
   454  		i = liveout.Next(i)
   455  		if i < 0 {
   456  			break
   457  		}
   458  		node := vars[i]
   459  		switch node.Class {
   460  		case ir.PPARAM, ir.PPARAMOUT:
   461  			if !node.IsOutputParamInRegisters() {
   462  				if node.FrameOffset() < 0 {
   463  					lv.f.Fatalf("Node %v has frameoffset %d\n", node.Sym().Name, node.FrameOffset())
   464  				}
   465  				typebits.SetNoCheck(node.Type(), node.FrameOffset(), args)
   466  				break
   467  			}
   468  			fallthrough // PPARAMOUT in registers acts memory-allocates like an AUTO
   469  		case ir.PAUTO:
   470  			typebits.Set(node.Type(), node.FrameOffset()+lv.stkptrsize, locals)
   471  		}
   472  	}
   473  }
   474  
   475  // IsUnsafe indicates that all points in this function are
   476  // unsafe-points.
   477  func IsUnsafe(f *ssa.Func) bool {
   478  	// The runtime assumes the only safe-points are function
   479  	// prologues (because that's how it used to be). We could and
   480  	// should improve that, but for now keep consider all points
   481  	// in the runtime unsafe. obj will add prologues and their
   482  	// safe-points.
   483  	//
   484  	// go:nosplit functions are similar. Since safe points used to
   485  	// be coupled with stack checks, go:nosplit often actually
   486  	// means "no safe points in this function".
   487  	return base.Flag.CompilingRuntime || f.NoSplit
   488  }
   489  
   490  // markUnsafePoints finds unsafe points and computes lv.unsafePoints.
   491  func (lv *liveness) markUnsafePoints() {
   492  	if IsUnsafe(lv.f) {
   493  		// No complex analysis necessary.
   494  		lv.allUnsafe = true
   495  		return
   496  	}
   497  
   498  	lv.unsafePoints = bitvec.New(int32(lv.f.NumValues()))
   499  	lv.unsafeBlocks = bitvec.New(int32(lv.f.NumBlocks()))
   500  
   501  	// Mark architecture-specific unsafe points.
   502  	for _, b := range lv.f.Blocks {
   503  		for _, v := range b.Values {
   504  			if v.Op.UnsafePoint() {
   505  				lv.unsafePoints.Set(int32(v.ID))
   506  			}
   507  		}
   508  	}
   509  
   510  	for _, b := range lv.f.Blocks {
   511  		for _, v := range b.Values {
   512  			if v.Op != ssa.OpWBend {
   513  				continue
   514  			}
   515  			// WBend appears at the start of a block, like this:
   516  			//    ...
   517  			//    if wbEnabled: goto C else D
   518  			// C:
   519  			//    ... some write barrier enabled code ...
   520  			//    goto B
   521  			// D:
   522  			//    ... some write barrier disabled code ...
   523  			//    goto B
   524  			// B:
   525  			//    m1 = Phi mem_C mem_D
   526  			//    m2 = store operation ... m1
   527  			//    m3 = store operation ... m2
   528  			//    m4 = WBend m3
   529  
   530  			// Find first memory op in the block, which should be a Phi.
   531  			m := v
   532  			for {
   533  				m = m.MemoryArg()
   534  				if m.Block != b {
   535  					lv.f.Fatalf("can't find Phi before write barrier end mark %v", v)
   536  				}
   537  				if m.Op == ssa.OpPhi {
   538  					break
   539  				}
   540  			}
   541  			// Find the two predecessor blocks (write barrier on and write barrier off)
   542  			if len(m.Args) != 2 {
   543  				lv.f.Fatalf("phi before write barrier end mark has %d args, want 2", len(m.Args))
   544  			}
   545  			c := b.Preds[0].Block()
   546  			d := b.Preds[1].Block()
   547  
   548  			// Find their common predecessor block (the one that branches based on wb on/off).
   549  			// It might be a diamond pattern, or one of the blocks in the diamond pattern might
   550  			// be missing.
   551  			var decisionBlock *ssa.Block
   552  			if len(c.Preds) == 1 && c.Preds[0].Block() == d {
   553  				decisionBlock = d
   554  			} else if len(d.Preds) == 1 && d.Preds[0].Block() == c {
   555  				decisionBlock = c
   556  			} else if len(c.Preds) == 1 && len(d.Preds) == 1 && c.Preds[0].Block() == d.Preds[0].Block() {
   557  				decisionBlock = c.Preds[0].Block()
   558  			} else {
   559  				lv.f.Fatalf("can't find write barrier pattern %v", v)
   560  			}
   561  			if len(decisionBlock.Succs) != 2 {
   562  				lv.f.Fatalf("common predecessor block the wrong type %s", decisionBlock.Kind)
   563  			}
   564  
   565  			// Flow backwards from the control value to find the
   566  			// flag load. We don't know what lowered ops we're
   567  			// looking for, but all current arches produce a
   568  			// single op that does the memory load from the flag
   569  			// address, so we look for that.
   570  			var load *ssa.Value
   571  			v := decisionBlock.Controls[0]
   572  			for {
   573  				if v.MemoryArg() != nil {
   574  					// Single instruction to load (and maybe compare) the write barrier flag.
   575  					if sym, ok := v.Aux.(*obj.LSym); ok && sym == ir.Syms.WriteBarrier {
   576  						load = v
   577  						break
   578  					}
   579  					// Some architectures have to materialize the address separate from
   580  					// the load.
   581  					if sym, ok := v.Args[0].Aux.(*obj.LSym); ok && sym == ir.Syms.WriteBarrier {
   582  						load = v
   583  						break
   584  					}
   585  					v.Fatalf("load of write barrier flag not from correct global: %s", v.LongString())
   586  				}
   587  				// Common case: just flow backwards.
   588  				if len(v.Args) == 1 || len(v.Args) == 2 && v.Args[0] == v.Args[1] {
   589  					// Note: 386 lowers Neq32 to (TESTL cond cond),
   590  					v = v.Args[0]
   591  					continue
   592  				}
   593  				v.Fatalf("write barrier control value has more than one argument: %s", v.LongString())
   594  			}
   595  
   596  			// Mark everything after the load unsafe.
   597  			found := false
   598  			for _, v := range decisionBlock.Values {
   599  				if found {
   600  					lv.unsafePoints.Set(int32(v.ID))
   601  				}
   602  				found = found || v == load
   603  			}
   604  			lv.unsafeBlocks.Set(int32(decisionBlock.ID))
   605  
   606  			// Mark the write barrier on/off blocks as unsafe.
   607  			for _, e := range decisionBlock.Succs {
   608  				x := e.Block()
   609  				if x == b {
   610  					continue
   611  				}
   612  				for _, v := range x.Values {
   613  					lv.unsafePoints.Set(int32(v.ID))
   614  				}
   615  				lv.unsafeBlocks.Set(int32(x.ID))
   616  			}
   617  
   618  			// Mark from the join point up to the WBend as unsafe.
   619  			for _, v := range b.Values {
   620  				if v.Op == ssa.OpWBend {
   621  					break
   622  				}
   623  				lv.unsafePoints.Set(int32(v.ID))
   624  			}
   625  		}
   626  	}
   627  }
   628  
   629  // Returns true for instructions that must have a stack map.
   630  //
   631  // This does not necessarily mean the instruction is a safe-point. In
   632  // particular, call Values can have a stack map in case the callee
   633  // grows the stack, but not themselves be a safe-point.
   634  func (lv *liveness) hasStackMap(v *ssa.Value) bool {
   635  	if !v.Op.IsCall() {
   636  		return false
   637  	}
   638  	// wbZero and wbCopy are write barriers and
   639  	// deeply non-preemptible. They are unsafe points and
   640  	// hence should not have liveness maps.
   641  	if sym, ok := v.Aux.(*ssa.AuxCall); ok && (sym.Fn == ir.Syms.WBZero || sym.Fn == ir.Syms.WBMove) {
   642  		return false
   643  	}
   644  	return true
   645  }
   646  
   647  // Initializes the sets for solving the live variables. Visits all the
   648  // instructions in each basic block to summarizes the information at each basic
   649  // block
   650  func (lv *liveness) prologue() {
   651  	lv.initcache()
   652  
   653  	for _, b := range lv.f.Blocks {
   654  		be := lv.blockEffects(b)
   655  
   656  		// Walk the block instructions backward and update the block
   657  		// effects with the each prog effects.
   658  		for j := len(b.Values) - 1; j >= 0; j-- {
   659  			pos, e := lv.valueEffects(b.Values[j])
   660  			if e&varkill != 0 {
   661  				be.varkill.Set(pos)
   662  				be.uevar.Unset(pos)
   663  			}
   664  			if e&uevar != 0 {
   665  				be.uevar.Set(pos)
   666  			}
   667  		}
   668  	}
   669  }
   670  
   671  // Solve the liveness dataflow equations.
   672  func (lv *liveness) solve() {
   673  	// These temporary bitvectors exist to avoid successive allocations and
   674  	// frees within the loop.
   675  	nvars := int32(len(lv.vars))
   676  	newlivein := bitvec.New(nvars)
   677  	newliveout := bitvec.New(nvars)
   678  
   679  	// Walk blocks in postorder ordering. This improves convergence.
   680  	po := lv.f.Postorder()
   681  
   682  	// Iterate through the blocks in reverse round-robin fashion. A work
   683  	// queue might be slightly faster. As is, the number of iterations is
   684  	// so low that it hardly seems to be worth the complexity.
   685  
   686  	for change := true; change; {
   687  		change = false
   688  		for _, b := range po {
   689  			be := lv.blockEffects(b)
   690  
   691  			newliveout.Clear()
   692  			switch b.Kind {
   693  			case ssa.BlockRet:
   694  				for _, pos := range lv.cache.retuevar {
   695  					newliveout.Set(pos)
   696  				}
   697  			case ssa.BlockRetJmp:
   698  				for _, pos := range lv.cache.tailuevar {
   699  					newliveout.Set(pos)
   700  				}
   701  			case ssa.BlockExit:
   702  				// panic exit - nothing to do
   703  			default:
   704  				// A variable is live on output from this block
   705  				// if it is live on input to some successor.
   706  				//
   707  				// out[b] = \bigcup_{s \in succ[b]} in[s]
   708  				newliveout.Copy(lv.blockEffects(b.Succs[0].Block()).livein)
   709  				for _, succ := range b.Succs[1:] {
   710  					newliveout.Or(newliveout, lv.blockEffects(succ.Block()).livein)
   711  				}
   712  			}
   713  
   714  			if !be.liveout.Eq(newliveout) {
   715  				change = true
   716  				be.liveout.Copy(newliveout)
   717  			}
   718  
   719  			// A variable is live on input to this block
   720  			// if it is used by this block, or live on output from this block and
   721  			// not set by the code in this block.
   722  			//
   723  			// in[b] = uevar[b] \cup (out[b] \setminus varkill[b])
   724  			newlivein.AndNot(be.liveout, be.varkill)
   725  			be.livein.Or(newlivein, be.uevar)
   726  		}
   727  	}
   728  }
   729  
   730  // Visits all instructions in a basic block and computes a bit vector of live
   731  // variables at each safe point locations.
   732  func (lv *liveness) epilogue() {
   733  	nvars := int32(len(lv.vars))
   734  	liveout := bitvec.New(nvars)
   735  	livedefer := bitvec.New(nvars) // always-live variables
   736  
   737  	// If there is a defer (that could recover), then all output
   738  	// parameters are live all the time.  In addition, any locals
   739  	// that are pointers to heap-allocated output parameters are
   740  	// also always live (post-deferreturn code needs these
   741  	// pointers to copy values back to the stack).
   742  	// TODO: if the output parameter is heap-allocated, then we
   743  	// don't need to keep the stack copy live?
   744  	if lv.fn.HasDefer() {
   745  		for i, n := range lv.vars {
   746  			if n.Class == ir.PPARAMOUT {
   747  				if n.IsOutputParamHeapAddr() {
   748  					// Just to be paranoid.  Heap addresses are PAUTOs.
   749  					base.Fatalf("variable %v both output param and heap output param", n)
   750  				}
   751  				if n.Heapaddr != nil {
   752  					// If this variable moved to the heap, then
   753  					// its stack copy is not live.
   754  					continue
   755  				}
   756  				// Note: zeroing is handled by zeroResults in walk.go.
   757  				livedefer.Set(int32(i))
   758  			}
   759  			if n.IsOutputParamHeapAddr() {
   760  				// This variable will be overwritten early in the function
   761  				// prologue (from the result of a mallocgc) but we need to
   762  				// zero it in case that malloc causes a stack scan.
   763  				n.SetNeedzero(true)
   764  				livedefer.Set(int32(i))
   765  			}
   766  			if n.OpenDeferSlot() {
   767  				// Open-coded defer args slots must be live
   768  				// everywhere in a function, since a panic can
   769  				// occur (almost) anywhere. Because it is live
   770  				// everywhere, it must be zeroed on entry.
   771  				livedefer.Set(int32(i))
   772  				// It was already marked as Needzero when created.
   773  				if !n.Needzero() {
   774  					base.Fatalf("all pointer-containing defer arg slots should have Needzero set")
   775  				}
   776  			}
   777  		}
   778  	}
   779  
   780  	// We must analyze the entry block first. The runtime assumes
   781  	// the function entry map is index 0. Conveniently, layout
   782  	// already ensured that the entry block is first.
   783  	if lv.f.Entry != lv.f.Blocks[0] {
   784  		lv.f.Fatalf("entry block must be first")
   785  	}
   786  
   787  	{
   788  		// Reserve an entry for function entry.
   789  		live := bitvec.New(nvars)
   790  		lv.livevars = append(lv.livevars, live)
   791  	}
   792  
   793  	for _, b := range lv.f.Blocks {
   794  		be := lv.blockEffects(b)
   795  
   796  		// Walk forward through the basic block instructions and
   797  		// allocate liveness maps for those instructions that need them.
   798  		for _, v := range b.Values {
   799  			if !lv.hasStackMap(v) {
   800  				continue
   801  			}
   802  
   803  			live := bitvec.New(nvars)
   804  			lv.livevars = append(lv.livevars, live)
   805  		}
   806  
   807  		// walk backward, construct maps at each safe point
   808  		index := int32(len(lv.livevars) - 1)
   809  
   810  		liveout.Copy(be.liveout)
   811  		for i := len(b.Values) - 1; i >= 0; i-- {
   812  			v := b.Values[i]
   813  
   814  			if lv.hasStackMap(v) {
   815  				// Found an interesting instruction, record the
   816  				// corresponding liveness information.
   817  
   818  				live := &lv.livevars[index]
   819  				live.Or(*live, liveout)
   820  				live.Or(*live, livedefer) // only for non-entry safe points
   821  				index--
   822  			}
   823  
   824  			// Update liveness information.
   825  			pos, e := lv.valueEffects(v)
   826  			if e&varkill != 0 {
   827  				liveout.Unset(pos)
   828  			}
   829  			if e&uevar != 0 {
   830  				liveout.Set(pos)
   831  			}
   832  		}
   833  
   834  		if b == lv.f.Entry {
   835  			if index != 0 {
   836  				base.Fatalf("bad index for entry point: %v", index)
   837  			}
   838  
   839  			// Check to make sure only input variables are live.
   840  			for i, n := range lv.vars {
   841  				if !liveout.Get(int32(i)) {
   842  					continue
   843  				}
   844  				if n.Class == ir.PPARAM {
   845  					continue // ok
   846  				}
   847  				base.FatalfAt(n.Pos(), "bad live variable at entry of %v: %L", lv.fn.Nname, n)
   848  			}
   849  
   850  			// Record live variables.
   851  			live := &lv.livevars[index]
   852  			live.Or(*live, liveout)
   853  		}
   854  
   855  		if lv.doClobber {
   856  			lv.clobber(b)
   857  		}
   858  
   859  		// The liveness maps for this block are now complete. Compact them.
   860  		lv.compact(b)
   861  	}
   862  
   863  	// If we have an open-coded deferreturn call, make a liveness map for it.
   864  	if lv.fn.OpenCodedDeferDisallowed() {
   865  		lv.livenessMap.DeferReturn = objw.StackMapDontCare
   866  	} else {
   867  		idx, _ := lv.stackMapSet.add(livedefer)
   868  		lv.livenessMap.DeferReturn = objw.StackMapIndex(idx)
   869  	}
   870  
   871  	// Done compacting. Throw out the stack map set.
   872  	lv.stackMaps = lv.stackMapSet.extractUnique()
   873  	lv.stackMapSet = bvecSet{}
   874  
   875  	// Useful sanity check: on entry to the function,
   876  	// the only things that can possibly be live are the
   877  	// input parameters.
   878  	for j, n := range lv.vars {
   879  		if n.Class != ir.PPARAM && lv.stackMaps[0].Get(int32(j)) {
   880  			lv.f.Fatalf("%v %L recorded as live on entry", lv.fn.Nname, n)
   881  		}
   882  	}
   883  }
   884  
   885  // Compact coalesces identical bitmaps from lv.livevars into the sets
   886  // lv.stackMapSet.
   887  //
   888  // Compact clears lv.livevars.
   889  //
   890  // There are actually two lists of bitmaps, one list for the local variables and one
   891  // list for the function arguments. Both lists are indexed by the same PCDATA
   892  // index, so the corresponding pairs must be considered together when
   893  // merging duplicates. The argument bitmaps change much less often during
   894  // function execution than the local variable bitmaps, so it is possible that
   895  // we could introduce a separate PCDATA index for arguments vs locals and
   896  // then compact the set of argument bitmaps separately from the set of
   897  // local variable bitmaps. As of 2014-04-02, doing this to the godoc binary
   898  // is actually a net loss: we save about 50k of argument bitmaps but the new
   899  // PCDATA tables cost about 100k. So for now we keep using a single index for
   900  // both bitmap lists.
   901  func (lv *liveness) compact(b *ssa.Block) {
   902  	pos := 0
   903  	if b == lv.f.Entry {
   904  		// Handle entry stack map.
   905  		lv.stackMapSet.add(lv.livevars[0])
   906  		pos++
   907  	}
   908  	for _, v := range b.Values {
   909  		if lv.hasStackMap(v) {
   910  			idx, _ := lv.stackMapSet.add(lv.livevars[pos])
   911  			pos++
   912  			lv.livenessMap.set(v, objw.StackMapIndex(idx))
   913  		}
   914  		if lv.allUnsafe || v.Op != ssa.OpClobber && lv.unsafePoints.Get(int32(v.ID)) {
   915  			lv.livenessMap.setUnsafeVal(v)
   916  		}
   917  	}
   918  	if lv.allUnsafe || lv.unsafeBlocks.Get(int32(b.ID)) {
   919  		lv.livenessMap.setUnsafeBlock(b)
   920  	}
   921  
   922  	// Reset livevars.
   923  	lv.livevars = lv.livevars[:0]
   924  }
   925  
   926  func (lv *liveness) enableClobber() {
   927  	// The clobberdead experiment inserts code to clobber pointer slots in all
   928  	// the dead variables (locals and args) at every synchronous safepoint.
   929  	if !base.Flag.ClobberDead {
   930  		return
   931  	}
   932  	if lv.fn.Pragma&ir.CgoUnsafeArgs != 0 {
   933  		// C or assembly code uses the exact frame layout. Don't clobber.
   934  		return
   935  	}
   936  	if len(lv.vars) > 10000 || len(lv.f.Blocks) > 10000 {
   937  		// Be careful to avoid doing too much work.
   938  		// Bail if >10000 variables or >10000 blocks.
   939  		// Otherwise, giant functions make this experiment generate too much code.
   940  		return
   941  	}
   942  	if lv.f.Name == "forkAndExecInChild" {
   943  		// forkAndExecInChild calls vfork on some platforms.
   944  		// The code we add here clobbers parts of the stack in the child.
   945  		// When the parent resumes, it is using the same stack frame. But the
   946  		// child has clobbered stack variables that the parent needs. Boom!
   947  		// In particular, the sys argument gets clobbered.
   948  		return
   949  	}
   950  	if lv.f.Name == "wbBufFlush" ||
   951  		((lv.f.Name == "callReflect" || lv.f.Name == "callMethod") && lv.fn.ABIWrapper()) {
   952  		// runtime.wbBufFlush must not modify its arguments. See the comments
   953  		// in runtime/mwbbuf.go:wbBufFlush.
   954  		//
   955  		// reflect.callReflect and reflect.callMethod are called from special
   956  		// functions makeFuncStub and methodValueCall. The runtime expects
   957  		// that it can find the first argument (ctxt) at 0(SP) in makeFuncStub
   958  		// and methodValueCall's frame (see runtime/traceback.go:getArgInfo).
   959  		// Normally callReflect and callMethod already do not modify the
   960  		// argument, and keep it alive. But the compiler-generated ABI wrappers
   961  		// don't do that. Special case the wrappers to not clobber its arguments.
   962  		lv.noClobberArgs = true
   963  	}
   964  	if h := os.Getenv("GOCLOBBERDEADHASH"); h != "" {
   965  		// Clobber only functions where the hash of the function name matches a pattern.
   966  		// Useful for binary searching for a miscompiled function.
   967  		hstr := ""
   968  		for _, b := range notsha256.Sum256([]byte(lv.f.Name)) {
   969  			hstr += fmt.Sprintf("%08b", b)
   970  		}
   971  		if !strings.HasSuffix(hstr, h) {
   972  			return
   973  		}
   974  		fmt.Printf("\t\t\tCLOBBERDEAD %s\n", lv.f.Name)
   975  	}
   976  	lv.doClobber = true
   977  }
   978  
   979  // Inserts code to clobber pointer slots in all the dead variables (locals and args)
   980  // at every synchronous safepoint in b.
   981  func (lv *liveness) clobber(b *ssa.Block) {
   982  	// Copy block's values to a temporary.
   983  	oldSched := append([]*ssa.Value{}, b.Values...)
   984  	b.Values = b.Values[:0]
   985  	idx := 0
   986  
   987  	// Clobber pointer slots in all dead variables at entry.
   988  	if b == lv.f.Entry {
   989  		for len(oldSched) > 0 && len(oldSched[0].Args) == 0 {
   990  			// Skip argless ops. We need to skip at least
   991  			// the lowered ClosurePtr op, because it
   992  			// really wants to be first. This will also
   993  			// skip ops like InitMem and SP, which are ok.
   994  			b.Values = append(b.Values, oldSched[0])
   995  			oldSched = oldSched[1:]
   996  		}
   997  		clobber(lv, b, lv.livevars[0])
   998  		idx++
   999  	}
  1000  
  1001  	// Copy values into schedule, adding clobbering around safepoints.
  1002  	for _, v := range oldSched {
  1003  		if !lv.hasStackMap(v) {
  1004  			b.Values = append(b.Values, v)
  1005  			continue
  1006  		}
  1007  		clobber(lv, b, lv.livevars[idx])
  1008  		b.Values = append(b.Values, v)
  1009  		idx++
  1010  	}
  1011  }
  1012  
  1013  // clobber generates code to clobber pointer slots in all dead variables
  1014  // (those not marked in live). Clobbering instructions are added to the end
  1015  // of b.Values.
  1016  func clobber(lv *liveness, b *ssa.Block, live bitvec.BitVec) {
  1017  	for i, n := range lv.vars {
  1018  		if !live.Get(int32(i)) && !n.Addrtaken() && !n.OpenDeferSlot() && !n.IsOutputParamHeapAddr() {
  1019  			// Don't clobber stack objects (address-taken). They are
  1020  			// tracked dynamically.
  1021  			// Also don't clobber slots that are live for defers (see
  1022  			// the code setting livedefer in epilogue).
  1023  			if lv.noClobberArgs && n.Class == ir.PPARAM {
  1024  				continue
  1025  			}
  1026  			clobberVar(b, n)
  1027  		}
  1028  	}
  1029  }
  1030  
  1031  // clobberVar generates code to trash the pointers in v.
  1032  // Clobbering instructions are added to the end of b.Values.
  1033  func clobberVar(b *ssa.Block, v *ir.Name) {
  1034  	clobberWalk(b, v, 0, v.Type())
  1035  }
  1036  
  1037  // b = block to which we append instructions
  1038  // v = variable
  1039  // offset = offset of (sub-portion of) variable to clobber (in bytes)
  1040  // t = type of sub-portion of v.
  1041  func clobberWalk(b *ssa.Block, v *ir.Name, offset int64, t *types.Type) {
  1042  	if !t.HasPointers() {
  1043  		return
  1044  	}
  1045  	switch t.Kind() {
  1046  	case types.TPTR,
  1047  		types.TUNSAFEPTR,
  1048  		types.TFUNC,
  1049  		types.TCHAN,
  1050  		types.TMAP:
  1051  		clobberPtr(b, v, offset)
  1052  
  1053  	case types.TSTRING:
  1054  		// struct { byte *str; int len; }
  1055  		clobberPtr(b, v, offset)
  1056  
  1057  	case types.TINTER:
  1058  		// struct { Itab *tab; void *data; }
  1059  		// or, when isnilinter(t)==true:
  1060  		// struct { Type *type; void *data; }
  1061  		clobberPtr(b, v, offset)
  1062  		clobberPtr(b, v, offset+int64(types.PtrSize))
  1063  
  1064  	case types.TSLICE:
  1065  		// struct { byte *array; int len; int cap; }
  1066  		clobberPtr(b, v, offset)
  1067  
  1068  	case types.TARRAY:
  1069  		for i := int64(0); i < t.NumElem(); i++ {
  1070  			clobberWalk(b, v, offset+i*t.Elem().Size(), t.Elem())
  1071  		}
  1072  
  1073  	case types.TSTRUCT:
  1074  		for _, t1 := range t.Fields() {
  1075  			clobberWalk(b, v, offset+t1.Offset, t1.Type)
  1076  		}
  1077  
  1078  	default:
  1079  		base.Fatalf("clobberWalk: unexpected type, %v", t)
  1080  	}
  1081  }
  1082  
  1083  // clobberPtr generates a clobber of the pointer at offset offset in v.
  1084  // The clobber instruction is added at the end of b.
  1085  func clobberPtr(b *ssa.Block, v *ir.Name, offset int64) {
  1086  	b.NewValue0IA(src.NoXPos, ssa.OpClobber, types.TypeVoid, offset, v)
  1087  }
  1088  
  1089  func (lv *liveness) showlive(v *ssa.Value, live bitvec.BitVec) {
  1090  	if base.Flag.Live == 0 || ir.FuncName(lv.fn) == "init" || strings.HasPrefix(ir.FuncName(lv.fn), ".") {
  1091  		return
  1092  	}
  1093  	if lv.fn.Wrapper() || lv.fn.Dupok() {
  1094  		// Skip reporting liveness information for compiler-generated wrappers.
  1095  		return
  1096  	}
  1097  	if !(v == nil || v.Op.IsCall()) {
  1098  		// Historically we only printed this information at
  1099  		// calls. Keep doing so.
  1100  		return
  1101  	}
  1102  	if live.IsEmpty() {
  1103  		return
  1104  	}
  1105  
  1106  	pos := lv.fn.Nname.Pos()
  1107  	if v != nil {
  1108  		pos = v.Pos
  1109  	}
  1110  
  1111  	s := "live at "
  1112  	if v == nil {
  1113  		s += fmt.Sprintf("entry to %s:", ir.FuncName(lv.fn))
  1114  	} else if sym, ok := v.Aux.(*ssa.AuxCall); ok && sym.Fn != nil {
  1115  		fn := sym.Fn.Name
  1116  		if pos := strings.Index(fn, "."); pos >= 0 {
  1117  			fn = fn[pos+1:]
  1118  		}
  1119  		s += fmt.Sprintf("call to %s:", fn)
  1120  	} else {
  1121  		s += "indirect call:"
  1122  	}
  1123  
  1124  	// Sort variable names for display. Variables aren't in any particular order, and
  1125  	// the order can change by architecture, particularly with differences in regabi.
  1126  	var names []string
  1127  	for j, n := range lv.vars {
  1128  		if live.Get(int32(j)) {
  1129  			names = append(names, n.Sym().Name)
  1130  		}
  1131  	}
  1132  	sort.Strings(names)
  1133  	for _, v := range names {
  1134  		s += " " + v
  1135  	}
  1136  
  1137  	base.WarnfAt(pos, s)
  1138  }
  1139  
  1140  func (lv *liveness) printbvec(printed bool, name string, live bitvec.BitVec) bool {
  1141  	if live.IsEmpty() {
  1142  		return printed
  1143  	}
  1144  
  1145  	if !printed {
  1146  		fmt.Printf("\t")
  1147  	} else {
  1148  		fmt.Printf(" ")
  1149  	}
  1150  	fmt.Printf("%s=", name)
  1151  
  1152  	comma := ""
  1153  	for i, n := range lv.vars {
  1154  		if !live.Get(int32(i)) {
  1155  			continue
  1156  		}
  1157  		fmt.Printf("%s%s", comma, n.Sym().Name)
  1158  		comma = ","
  1159  	}
  1160  	return true
  1161  }
  1162  
  1163  // printeffect is like printbvec, but for valueEffects.
  1164  func (lv *liveness) printeffect(printed bool, name string, pos int32, x bool) bool {
  1165  	if !x {
  1166  		return printed
  1167  	}
  1168  	if !printed {
  1169  		fmt.Printf("\t")
  1170  	} else {
  1171  		fmt.Printf(" ")
  1172  	}
  1173  	fmt.Printf("%s=", name)
  1174  	if x {
  1175  		fmt.Printf("%s", lv.vars[pos].Sym().Name)
  1176  	}
  1177  
  1178  	return true
  1179  }
  1180  
  1181  // Prints the computed liveness information and inputs, for debugging.
  1182  // This format synthesizes the information used during the multiple passes
  1183  // into a single presentation.
  1184  func (lv *liveness) printDebug() {
  1185  	fmt.Printf("liveness: %s\n", ir.FuncName(lv.fn))
  1186  
  1187  	for i, b := range lv.f.Blocks {
  1188  		if i > 0 {
  1189  			fmt.Printf("\n")
  1190  		}
  1191  
  1192  		// bb#0 pred=1,2 succ=3,4
  1193  		fmt.Printf("bb#%d pred=", b.ID)
  1194  		for j, pred := range b.Preds {
  1195  			if j > 0 {
  1196  				fmt.Printf(",")
  1197  			}
  1198  			fmt.Printf("%d", pred.Block().ID)
  1199  		}
  1200  		fmt.Printf(" succ=")
  1201  		for j, succ := range b.Succs {
  1202  			if j > 0 {
  1203  				fmt.Printf(",")
  1204  			}
  1205  			fmt.Printf("%d", succ.Block().ID)
  1206  		}
  1207  		fmt.Printf("\n")
  1208  
  1209  		be := lv.blockEffects(b)
  1210  
  1211  		// initial settings
  1212  		printed := false
  1213  		printed = lv.printbvec(printed, "uevar", be.uevar)
  1214  		printed = lv.printbvec(printed, "livein", be.livein)
  1215  		if printed {
  1216  			fmt.Printf("\n")
  1217  		}
  1218  
  1219  		// program listing, with individual effects listed
  1220  
  1221  		if b == lv.f.Entry {
  1222  			live := lv.stackMaps[0]
  1223  			fmt.Printf("(%s) function entry\n", base.FmtPos(lv.fn.Nname.Pos()))
  1224  			fmt.Printf("\tlive=")
  1225  			printed = false
  1226  			for j, n := range lv.vars {
  1227  				if !live.Get(int32(j)) {
  1228  					continue
  1229  				}
  1230  				if printed {
  1231  					fmt.Printf(",")
  1232  				}
  1233  				fmt.Printf("%v", n)
  1234  				printed = true
  1235  			}
  1236  			fmt.Printf("\n")
  1237  		}
  1238  
  1239  		for _, v := range b.Values {
  1240  			fmt.Printf("(%s) %v\n", base.FmtPos(v.Pos), v.LongString())
  1241  
  1242  			pcdata := lv.livenessMap.Get(v)
  1243  
  1244  			pos, effect := lv.valueEffects(v)
  1245  			printed = false
  1246  			printed = lv.printeffect(printed, "uevar", pos, effect&uevar != 0)
  1247  			printed = lv.printeffect(printed, "varkill", pos, effect&varkill != 0)
  1248  			if printed {
  1249  				fmt.Printf("\n")
  1250  			}
  1251  
  1252  			if pcdata.StackMapValid() {
  1253  				fmt.Printf("\tlive=")
  1254  				printed = false
  1255  				if pcdata.StackMapValid() {
  1256  					live := lv.stackMaps[pcdata]
  1257  					for j, n := range lv.vars {
  1258  						if !live.Get(int32(j)) {
  1259  							continue
  1260  						}
  1261  						if printed {
  1262  							fmt.Printf(",")
  1263  						}
  1264  						fmt.Printf("%v", n)
  1265  						printed = true
  1266  					}
  1267  				}
  1268  				fmt.Printf("\n")
  1269  			}
  1270  
  1271  			if lv.livenessMap.GetUnsafe(v) {
  1272  				fmt.Printf("\tunsafe-point\n")
  1273  			}
  1274  		}
  1275  		if lv.livenessMap.GetUnsafeBlock(b) {
  1276  			fmt.Printf("\tunsafe-block\n")
  1277  		}
  1278  
  1279  		// bb bitsets
  1280  		fmt.Printf("end\n")
  1281  		printed = false
  1282  		printed = lv.printbvec(printed, "varkill", be.varkill)
  1283  		printed = lv.printbvec(printed, "liveout", be.liveout)
  1284  		if printed {
  1285  			fmt.Printf("\n")
  1286  		}
  1287  	}
  1288  
  1289  	fmt.Printf("\n")
  1290  }
  1291  
  1292  // Dumps a slice of bitmaps to a symbol as a sequence of uint32 values. The
  1293  // first word dumped is the total number of bitmaps. The second word is the
  1294  // length of the bitmaps. All bitmaps are assumed to be of equal length. The
  1295  // remaining bytes are the raw bitmaps.
  1296  func (lv *liveness) emit() (argsSym, liveSym *obj.LSym) {
  1297  	// Size args bitmaps to be just large enough to hold the largest pointer.
  1298  	// First, find the largest Xoffset node we care about.
  1299  	// (Nodes without pointers aren't in lv.vars; see ShouldTrack.)
  1300  	var maxArgNode *ir.Name
  1301  	for _, n := range lv.vars {
  1302  		switch n.Class {
  1303  		case ir.PPARAM, ir.PPARAMOUT:
  1304  			if !n.IsOutputParamInRegisters() {
  1305  				if maxArgNode == nil || n.FrameOffset() > maxArgNode.FrameOffset() {
  1306  					maxArgNode = n
  1307  				}
  1308  			}
  1309  		}
  1310  	}
  1311  	// Next, find the offset of the largest pointer in the largest node.
  1312  	var maxArgs int64
  1313  	if maxArgNode != nil {
  1314  		maxArgs = maxArgNode.FrameOffset() + types.PtrDataSize(maxArgNode.Type())
  1315  	}
  1316  
  1317  	// Size locals bitmaps to be stkptrsize sized.
  1318  	// We cannot shrink them to only hold the largest pointer,
  1319  	// because their size is used to calculate the beginning
  1320  	// of the local variables frame.
  1321  	// Further discussion in https://golang.org/cl/104175.
  1322  	// TODO: consider trimming leading zeros.
  1323  	// This would require shifting all bitmaps.
  1324  	maxLocals := lv.stkptrsize
  1325  
  1326  	// Temporary symbols for encoding bitmaps.
  1327  	var argsSymTmp, liveSymTmp obj.LSym
  1328  
  1329  	args := bitvec.New(int32(maxArgs / int64(types.PtrSize)))
  1330  	aoff := objw.Uint32(&argsSymTmp, 0, uint32(len(lv.stackMaps))) // number of bitmaps
  1331  	aoff = objw.Uint32(&argsSymTmp, aoff, uint32(args.N))          // number of bits in each bitmap
  1332  
  1333  	locals := bitvec.New(int32(maxLocals / int64(types.PtrSize)))
  1334  	loff := objw.Uint32(&liveSymTmp, 0, uint32(len(lv.stackMaps))) // number of bitmaps
  1335  	loff = objw.Uint32(&liveSymTmp, loff, uint32(locals.N))        // number of bits in each bitmap
  1336  
  1337  	for _, live := range lv.stackMaps {
  1338  		args.Clear()
  1339  		locals.Clear()
  1340  
  1341  		lv.pointerMap(live, lv.vars, args, locals)
  1342  
  1343  		aoff = objw.BitVec(&argsSymTmp, aoff, args)
  1344  		loff = objw.BitVec(&liveSymTmp, loff, locals)
  1345  	}
  1346  
  1347  	// These symbols will be added to Ctxt.Data by addGCLocals
  1348  	// after parallel compilation is done.
  1349  	return base.Ctxt.GCLocalsSym(argsSymTmp.P), base.Ctxt.GCLocalsSym(liveSymTmp.P)
  1350  }
  1351  
  1352  // Entry pointer for Compute analysis. Solves for the Compute of
  1353  // pointer variables in the function and emits a runtime data
  1354  // structure read by the garbage collector.
  1355  // Returns a map from GC safe points to their corresponding stack map index,
  1356  // and a map that contains all input parameters that may be partially live.
  1357  func Compute(curfn *ir.Func, f *ssa.Func, stkptrsize int64, pp *objw.Progs) (Map, map[*ir.Name]bool) {
  1358  	// Construct the global liveness state.
  1359  	vars, idx := getvariables(curfn)
  1360  	lv := newliveness(curfn, f, vars, idx, stkptrsize)
  1361  
  1362  	// Run the dataflow framework.
  1363  	lv.prologue()
  1364  	lv.solve()
  1365  	lv.epilogue()
  1366  	if base.Flag.Live > 0 {
  1367  		lv.showlive(nil, lv.stackMaps[0])
  1368  		for _, b := range f.Blocks {
  1369  			for _, val := range b.Values {
  1370  				if idx := lv.livenessMap.Get(val); idx.StackMapValid() {
  1371  					lv.showlive(val, lv.stackMaps[idx])
  1372  				}
  1373  			}
  1374  		}
  1375  	}
  1376  	if base.Flag.Live >= 2 {
  1377  		lv.printDebug()
  1378  	}
  1379  
  1380  	// Update the function cache.
  1381  	{
  1382  		cache := f.Cache.Liveness.(*livenessFuncCache)
  1383  		if cap(lv.be) < 2000 { // Threshold from ssa.Cache slices.
  1384  			for i := range lv.be {
  1385  				lv.be[i] = blockEffects{}
  1386  			}
  1387  			cache.be = lv.be
  1388  		}
  1389  		if len(lv.livenessMap.Vals) < 2000 {
  1390  			cache.livenessMap = lv.livenessMap
  1391  		}
  1392  	}
  1393  
  1394  	// Emit the live pointer map data structures
  1395  	ls := curfn.LSym
  1396  	fninfo := ls.Func()
  1397  	fninfo.GCArgs, fninfo.GCLocals = lv.emit()
  1398  
  1399  	p := pp.Prog(obj.AFUNCDATA)
  1400  	p.From.SetConst(rtabi.FUNCDATA_ArgsPointerMaps)
  1401  	p.To.Type = obj.TYPE_MEM
  1402  	p.To.Name = obj.NAME_EXTERN
  1403  	p.To.Sym = fninfo.GCArgs
  1404  
  1405  	p = pp.Prog(obj.AFUNCDATA)
  1406  	p.From.SetConst(rtabi.FUNCDATA_LocalsPointerMaps)
  1407  	p.To.Type = obj.TYPE_MEM
  1408  	p.To.Name = obj.NAME_EXTERN
  1409  	p.To.Sym = fninfo.GCLocals
  1410  
  1411  	if x := lv.emitStackObjects(); x != nil {
  1412  		p := pp.Prog(obj.AFUNCDATA)
  1413  		p.From.SetConst(rtabi.FUNCDATA_StackObjects)
  1414  		p.To.Type = obj.TYPE_MEM
  1415  		p.To.Name = obj.NAME_EXTERN
  1416  		p.To.Sym = x
  1417  	}
  1418  
  1419  	return lv.livenessMap, lv.partLiveArgs
  1420  }
  1421  
  1422  func (lv *liveness) emitStackObjects() *obj.LSym {
  1423  	var vars []*ir.Name
  1424  	for _, n := range lv.fn.Dcl {
  1425  		if shouldTrack(n) && n.Addrtaken() && n.Esc() != ir.EscHeap {
  1426  			vars = append(vars, n)
  1427  		}
  1428  	}
  1429  	if len(vars) == 0 {
  1430  		return nil
  1431  	}
  1432  
  1433  	// Sort variables from lowest to highest address.
  1434  	sort.Slice(vars, func(i, j int) bool { return vars[i].FrameOffset() < vars[j].FrameOffset() })
  1435  
  1436  	// Populate the stack object data.
  1437  	// Format must match runtime/stack.go:stackObjectRecord.
  1438  	x := base.Ctxt.Lookup(lv.fn.LSym.Name + ".stkobj")
  1439  	x.Set(obj.AttrContentAddressable, true)
  1440  	lv.fn.LSym.Func().StackObjects = x
  1441  	off := 0
  1442  	off = objw.Uintptr(x, off, uint64(len(vars)))
  1443  	for _, v := range vars {
  1444  		// Note: arguments and return values have non-negative Xoffset,
  1445  		// in which case the offset is relative to argp.
  1446  		// Locals have a negative Xoffset, in which case the offset is relative to varp.
  1447  		// We already limit the frame size, so the offset and the object size
  1448  		// should not be too big.
  1449  		frameOffset := v.FrameOffset()
  1450  		if frameOffset != int64(int32(frameOffset)) {
  1451  			base.Fatalf("frame offset too big: %v %d", v, frameOffset)
  1452  		}
  1453  		off = objw.Uint32(x, off, uint32(frameOffset))
  1454  
  1455  		t := v.Type()
  1456  		sz := t.Size()
  1457  		if sz != int64(int32(sz)) {
  1458  			base.Fatalf("stack object too big: %v of type %v, size %d", v, t, sz)
  1459  		}
  1460  		lsym, useGCProg, ptrdata := reflectdata.GCSym(t)
  1461  		if useGCProg {
  1462  			ptrdata = -ptrdata
  1463  		}
  1464  		off = objw.Uint32(x, off, uint32(sz))
  1465  		off = objw.Uint32(x, off, uint32(ptrdata))
  1466  		off = objw.SymPtrOff(x, off, lsym)
  1467  	}
  1468  
  1469  	if base.Flag.Live != 0 {
  1470  		for _, v := range vars {
  1471  			base.WarnfAt(v.Pos(), "stack object %v %v", v, v.Type())
  1472  		}
  1473  	}
  1474  
  1475  	return x
  1476  }
  1477  
  1478  // isfat reports whether a variable of type t needs multiple assignments to initialize.
  1479  // For example:
  1480  //
  1481  //	type T struct { x, y int }
  1482  //	x := T{x: 0, y: 1}
  1483  //
  1484  // Then we need:
  1485  //
  1486  //	var t T
  1487  //	t.x = 0
  1488  //	t.y = 1
  1489  //
  1490  // to fully initialize t.
  1491  func isfat(t *types.Type) bool {
  1492  	if t != nil {
  1493  		switch t.Kind() {
  1494  		case types.TSLICE, types.TSTRING,
  1495  			types.TINTER: // maybe remove later
  1496  			return true
  1497  		case types.TARRAY:
  1498  			// Array of 1 element, check if element is fat
  1499  			if t.NumElem() == 1 {
  1500  				return isfat(t.Elem())
  1501  			}
  1502  			return true
  1503  		case types.TSTRUCT:
  1504  			// Struct with 1 field, check if field is fat
  1505  			if t.NumFields() == 1 {
  1506  				return isfat(t.Field(0).Type)
  1507  			}
  1508  			return true
  1509  		}
  1510  	}
  1511  
  1512  	return false
  1513  }
  1514  
  1515  // WriteFuncMap writes the pointer bitmaps for bodyless function fn's
  1516  // inputs and outputs as the value of symbol <fn>.args_stackmap.
  1517  // If fn has outputs, two bitmaps are written, otherwise just one.
  1518  func WriteFuncMap(fn *ir.Func, abiInfo *abi.ABIParamResultInfo) {
  1519  	if ir.FuncName(fn) == "_" || fn.Sym().Linkname != "" {
  1520  		return
  1521  	}
  1522  	nptr := int(abiInfo.ArgWidth() / int64(types.PtrSize))
  1523  	bv := bitvec.New(int32(nptr))
  1524  
  1525  	for _, p := range abiInfo.InParams() {
  1526  		typebits.SetNoCheck(p.Type, p.FrameOffset(abiInfo), bv)
  1527  	}
  1528  
  1529  	nbitmap := 1
  1530  	if fn.Type().NumResults() > 0 {
  1531  		nbitmap = 2
  1532  	}
  1533  	lsym := base.Ctxt.Lookup(fn.LSym.Name + ".args_stackmap")
  1534  	off := objw.Uint32(lsym, 0, uint32(nbitmap))
  1535  	off = objw.Uint32(lsym, off, uint32(bv.N))
  1536  	off = objw.BitVec(lsym, off, bv)
  1537  
  1538  	if fn.Type().NumResults() > 0 {
  1539  		for _, p := range abiInfo.OutParams() {
  1540  			if len(p.Registers) == 0 {
  1541  				typebits.SetNoCheck(p.Type, p.FrameOffset(abiInfo), bv)
  1542  			}
  1543  		}
  1544  		off = objw.BitVec(lsym, off, bv)
  1545  	}
  1546  
  1547  	objw.Global(lsym, int32(off), obj.RODATA|obj.LOCAL)
  1548  }
  1549  

View as plain text