// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package amd64 import ( "cmd/compile/internal/ir" "cmd/compile/internal/objw" "cmd/compile/internal/types" "cmd/internal/obj" "cmd/internal/obj/x86" "internal/buildcfg" ) // no floating point in note handlers on Plan 9 var isPlan9 = buildcfg.GOOS == "plan9" // DUFFZERO consists of repeated blocks of 4 MOVUPSs + LEAQ, // See runtime/mkduff.go. const ( dzBlocks = 16 // number of MOV/ADD blocks dzBlockLen = 4 // number of clears per block dzBlockSize = 23 // size of instructions in a single block dzMovSize = 5 // size of single MOV instruction w/ offset dzLeaqSize = 4 // size of single LEAQ instruction dzClearStep = 16 // number of bytes cleared by each MOV instruction dzClearLen = dzClearStep * dzBlockLen // bytes cleared by one block dzSize = dzBlocks * dzBlockSize ) // dzOff returns the offset for a jump into DUFFZERO. // b is the number of bytes to zero. func dzOff(b int64) int64 { off := int64(dzSize) off -= b / dzClearLen * dzBlockSize tailLen := b % dzClearLen if tailLen >= dzClearStep { off -= dzLeaqSize + dzMovSize*(tailLen/dzClearStep) } return off } // duffzeroDI returns the pre-adjustment to DI for a call to DUFFZERO. // b is the number of bytes to zero. func dzDI(b int64) int64 { tailLen := b % dzClearLen if tailLen < dzClearStep { return 0 } tailSteps := tailLen / dzClearStep return -dzClearStep * (dzBlockLen - tailSteps) } func zerorange(pp *objw.Progs, p *obj.Prog, off, cnt int64, state *uint32) *obj.Prog { const ( r13 = 1 << iota // if R13 is already zeroed. ) if cnt == 0 { return p } if cnt == 8 { p = pp.Append(p, x86.AMOVQ, obj.TYPE_REG, x86.REG_X15, 0, obj.TYPE_MEM, x86.REG_SP, off) } else if !isPlan9 && cnt <= int64(8*types.RegSize) { for i := int64(0); i < cnt/16; i++ { p = pp.Append(p, x86.AMOVUPS, obj.TYPE_REG, x86.REG_X15, 0, obj.TYPE_MEM, x86.REG_SP, off+i*16) } if cnt%16 != 0 { p = pp.Append(p, x86.AMOVUPS, obj.TYPE_REG, x86.REG_X15, 0, obj.TYPE_MEM, x86.REG_SP, off+cnt-int64(16)) } } else if !isPlan9 && (cnt <= int64(128*types.RegSize)) { // Save DI to r12. With the amd64 Go register abi, DI can contain // an incoming parameter, whereas R12 is always scratch. p = pp.Append(p, x86.AMOVQ, obj.TYPE_REG, x86.REG_DI, 0, obj.TYPE_REG, x86.REG_R12, 0) // Emit duffzero call p = pp.Append(p, leaptr, obj.TYPE_MEM, x86.REG_SP, off+dzDI(cnt), obj.TYPE_REG, x86.REG_DI, 0) p = pp.Append(p, obj.ADUFFZERO, obj.TYPE_NONE, 0, 0, obj.TYPE_ADDR, 0, dzOff(cnt)) p.To.Sym = ir.Syms.Duffzero if cnt%16 != 0 { p = pp.Append(p, x86.AMOVUPS, obj.TYPE_REG, x86.REG_X15, 0, obj.TYPE_MEM, x86.REG_DI, -int64(8)) } // Restore DI from r12 p = pp.Append(p, x86.AMOVQ, obj.TYPE_REG, x86.REG_R12, 0, obj.TYPE_REG, x86.REG_DI, 0) } else { // When the register ABI is in effect, at this point in the // prolog we may have live values in all of RAX,RDI,RCX. Save // them off to registers before the REPSTOSQ below, then // restore. Note that R12 and R13 are always available as // scratch regs; here we also use R15 (this is safe to do // since there won't be any globals accessed in the prolog). // See rewriteToUseGot() in obj6.go for more on r15 use. // Save rax/rdi/rcx p = pp.Append(p, x86.AMOVQ, obj.TYPE_REG, x86.REG_DI, 0, obj.TYPE_REG, x86.REG_R12, 0) p = pp.Append(p, x86.AMOVQ, obj.TYPE_REG, x86.REG_AX, 0, obj.TYPE_REG, x86.REG_R13, 0) p = pp.Append(p, x86.AMOVQ, obj.TYPE_REG, x86.REG_CX, 0, obj.TYPE_REG, x86.REG_R15, 0) // Set up the REPSTOSQ and kick it off. p = pp.Append(p, x86.AXORL, obj.TYPE_REG, x86.REG_AX, 0, obj.TYPE_REG, x86.REG_AX, 0) p = pp.Append(p, x86.AMOVQ, obj.TYPE_CONST, 0, cnt/int64(types.RegSize), obj.TYPE_REG, x86.REG_CX, 0) p = pp.Append(p, leaptr, obj.TYPE_MEM, x86.REG_SP, off, obj.TYPE_REG, x86.REG_DI, 0) p = pp.Append(p, x86.AREP, obj.TYPE_NONE, 0, 0, obj.TYPE_NONE, 0, 0) p = pp.Append(p, x86.ASTOSQ, obj.TYPE_NONE, 0, 0, obj.TYPE_NONE, 0, 0) // Restore rax/rdi/rcx p = pp.Append(p, x86.AMOVQ, obj.TYPE_REG, x86.REG_R12, 0, obj.TYPE_REG, x86.REG_DI, 0) p = pp.Append(p, x86.AMOVQ, obj.TYPE_REG, x86.REG_R13, 0, obj.TYPE_REG, x86.REG_AX, 0) p = pp.Append(p, x86.AMOVQ, obj.TYPE_REG, x86.REG_R15, 0, obj.TYPE_REG, x86.REG_CX, 0) // Record the fact that r13 is no longer zero. *state &= ^uint32(r13) } return p } func ginsnop(pp *objw.Progs) *obj.Prog { // This is a hardware nop (1-byte 0x90) instruction, // even though we describe it as an explicit XCHGL here. // Particularly, this does not zero the high 32 bits // like typical *L opcodes. // (gas assembles "xchg %eax,%eax" to 0x87 0xc0, which // does zero the high 32 bits.) p := pp.Prog(x86.AXCHGL) p.From.Type = obj.TYPE_REG p.From.Reg = x86.REG_AX p.To.Type = obj.TYPE_REG p.To.Reg = x86.REG_AX return p }