// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package main import ( "bytes" "cmd/internal/pkgpath" "debug/elf" "debug/macho" "debug/pe" "fmt" "go/ast" "go/printer" "go/token" "internal/xcoff" "io" "os" "os/exec" "path/filepath" "regexp" "sort" "strings" "unicode" ) var ( conf = printer.Config{Mode: printer.SourcePos, Tabwidth: 8} noSourceConf = printer.Config{Tabwidth: 8} ) // writeDefs creates output files to be compiled by gc and gcc. func (p *Package) writeDefs() { var fgo2, fc io.Writer f := creat(*objDir + "_cgo_gotypes.go") defer f.Close() fgo2 = f if *gccgo { f := creat(*objDir + "_cgo_defun.c") defer f.Close() fc = f } fm := creat(*objDir + "_cgo_main.c") var gccgoInit strings.Builder if !*gccgo { for _, arg := range p.LdFlags { fmt.Fprintf(fgo2, "//go:cgo_ldflag %q\n", arg) } } else { fflg := creat(*objDir + "_cgo_flags") for _, arg := range p.LdFlags { fmt.Fprintf(fflg, "_CGO_LDFLAGS=%s\n", arg) } fflg.Close() } // Write C main file for using gcc to resolve imports. fmt.Fprintf(fm, "#include \n") // For size_t below. fmt.Fprintf(fm, "int main() { return 0; }\n") if *importRuntimeCgo { fmt.Fprintf(fm, "void crosscall2(void(*fn)(void*) __attribute__((unused)), void *a __attribute__((unused)), int c __attribute__((unused)), size_t ctxt __attribute__((unused))) { }\n") fmt.Fprintf(fm, "size_t _cgo_wait_runtime_init_done(void) { return 0; }\n") fmt.Fprintf(fm, "void _cgo_release_context(size_t ctxt __attribute__((unused))) { }\n") fmt.Fprintf(fm, "char* _cgo_topofstack(void) { return (char*)0; }\n") } else { // If we're not importing runtime/cgo, we *are* runtime/cgo, // which provides these functions. We just need a prototype. fmt.Fprintf(fm, "void crosscall2(void(*fn)(void*), void *a, int c, size_t ctxt);\n") fmt.Fprintf(fm, "size_t _cgo_wait_runtime_init_done(void);\n") fmt.Fprintf(fm, "void _cgo_release_context(size_t);\n") } fmt.Fprintf(fm, "void _cgo_allocate(void *a __attribute__((unused)), int c __attribute__((unused))) { }\n") fmt.Fprintf(fm, "void _cgo_panic(void *a __attribute__((unused)), int c __attribute__((unused))) { }\n") fmt.Fprintf(fm, "void _cgo_reginit(void) { }\n") // Write second Go output: definitions of _C_xxx. // In a separate file so that the import of "unsafe" does not // pollute the original file. fmt.Fprintf(fgo2, "// Code generated by cmd/cgo; DO NOT EDIT.\n\n") fmt.Fprintf(fgo2, "package %s\n\n", p.PackageName) fmt.Fprintf(fgo2, "import \"unsafe\"\n\n") if *importSyscall { fmt.Fprintf(fgo2, "import \"syscall\"\n\n") } if *importRuntimeCgo { if !*gccgoDefineCgoIncomplete { fmt.Fprintf(fgo2, "import _cgopackage \"runtime/cgo\"\n\n") fmt.Fprintf(fgo2, "type _ _cgopackage.Incomplete\n") // prevent import-not-used error } else { fmt.Fprintf(fgo2, "//go:notinheap\n") fmt.Fprintf(fgo2, "type _cgopackage_Incomplete struct{ _ struct{ _ struct{} } }\n") } } if *importSyscall { fmt.Fprintf(fgo2, "var _ syscall.Errno\n") } fmt.Fprintf(fgo2, "func _Cgo_ptr(ptr unsafe.Pointer) unsafe.Pointer { return ptr }\n\n") if !*gccgo { fmt.Fprintf(fgo2, "//go:linkname _Cgo_always_false runtime.cgoAlwaysFalse\n") fmt.Fprintf(fgo2, "var _Cgo_always_false bool\n") fmt.Fprintf(fgo2, "//go:linkname _Cgo_use runtime.cgoUse\n") fmt.Fprintf(fgo2, "func _Cgo_use(interface{})\n") } fmt.Fprintf(fgo2, "//go:linkname _Cgo_no_callback runtime.cgoNoCallback\n") fmt.Fprintf(fgo2, "func _Cgo_no_callback(bool)\n") typedefNames := make([]string, 0, len(typedef)) for name := range typedef { if name == "_Ctype_void" { // We provide an appropriate declaration for // _Ctype_void below (#39877). continue } typedefNames = append(typedefNames, name) } sort.Strings(typedefNames) for _, name := range typedefNames { def := typedef[name] fmt.Fprintf(fgo2, "type %s ", name) // We don't have source info for these types, so write them out without source info. // Otherwise types would look like: // // type _Ctype_struct_cb struct { // //line :1 // on_test *[0]byte // //line :1 // } // // Which is not useful. Moreover we never override source info, // so subsequent source code uses the same source info. // Moreover, empty file name makes compile emit no source debug info at all. var buf bytes.Buffer noSourceConf.Fprint(&buf, fset, def.Go) if bytes.HasPrefix(buf.Bytes(), []byte("_Ctype_")) || strings.HasPrefix(name, "_Ctype_enum_") || strings.HasPrefix(name, "_Ctype_union_") { // This typedef is of the form `typedef a b` and should be an alias. fmt.Fprintf(fgo2, "= ") } fmt.Fprintf(fgo2, "%s", buf.Bytes()) fmt.Fprintf(fgo2, "\n\n") } if *gccgo { fmt.Fprintf(fgo2, "type _Ctype_void byte\n") } else { fmt.Fprintf(fgo2, "type _Ctype_void [0]byte\n") } if *gccgo { fmt.Fprint(fgo2, gccgoGoProlog) fmt.Fprint(fc, p.cPrologGccgo()) } else { fmt.Fprint(fgo2, goProlog) } if fc != nil { fmt.Fprintf(fc, "#line 1 \"cgo-generated-wrappers\"\n") } if fm != nil { fmt.Fprintf(fm, "#line 1 \"cgo-generated-wrappers\"\n") } gccgoSymbolPrefix := p.gccgoSymbolPrefix() cVars := make(map[string]bool) for _, key := range nameKeys(p.Name) { n := p.Name[key] if !n.IsVar() { continue } if !cVars[n.C] { if *gccgo { fmt.Fprintf(fc, "extern byte *%s;\n", n.C) } else { // Force a reference to all symbols so that // the external linker will add DT_NEEDED // entries as needed on ELF systems. // Treat function variables differently // to avoid type conflict errors from LTO // (Link Time Optimization). if n.Kind == "fpvar" { fmt.Fprintf(fm, "extern void %s();\n", n.C) } else { fmt.Fprintf(fm, "extern char %s[];\n", n.C) fmt.Fprintf(fm, "void *_cgohack_%s = %s;\n\n", n.C, n.C) } fmt.Fprintf(fgo2, "//go:linkname __cgo_%s %s\n", n.C, n.C) fmt.Fprintf(fgo2, "//go:cgo_import_static %s\n", n.C) fmt.Fprintf(fgo2, "var __cgo_%s byte\n", n.C) } cVars[n.C] = true } var node ast.Node if n.Kind == "var" { node = &ast.StarExpr{X: n.Type.Go} } else if n.Kind == "fpvar" { node = n.Type.Go } else { panic(fmt.Errorf("invalid var kind %q", n.Kind)) } if *gccgo { fmt.Fprintf(fc, `extern void *%s __asm__("%s.%s");`, n.Mangle, gccgoSymbolPrefix, gccgoToSymbol(n.Mangle)) fmt.Fprintf(&gccgoInit, "\t%s = &%s;\n", n.Mangle, n.C) fmt.Fprintf(fc, "\n") } fmt.Fprintf(fgo2, "var %s ", n.Mangle) conf.Fprint(fgo2, fset, node) if !*gccgo { fmt.Fprintf(fgo2, " = (") conf.Fprint(fgo2, fset, node) fmt.Fprintf(fgo2, ")(unsafe.Pointer(&__cgo_%s))", n.C) } fmt.Fprintf(fgo2, "\n") } if *gccgo { fmt.Fprintf(fc, "\n") } for _, key := range nameKeys(p.Name) { n := p.Name[key] if n.Const != "" { fmt.Fprintf(fgo2, "const %s = %s\n", n.Mangle, n.Const) } } fmt.Fprintf(fgo2, "\n") callsMalloc := false for _, key := range nameKeys(p.Name) { n := p.Name[key] if n.FuncType != nil { p.writeDefsFunc(fgo2, n, &callsMalloc) } } fgcc := creat(*objDir + "_cgo_export.c") fgcch := creat(*objDir + "_cgo_export.h") if *gccgo { p.writeGccgoExports(fgo2, fm, fgcc, fgcch) } else { p.writeExports(fgo2, fm, fgcc, fgcch) } if callsMalloc && !*gccgo { fmt.Fprint(fgo2, strings.Replace(cMallocDefGo, "PREFIX", cPrefix, -1)) fmt.Fprint(fgcc, strings.Replace(strings.Replace(cMallocDefC, "PREFIX", cPrefix, -1), "PACKED", p.packedAttribute(), -1)) } if err := fgcc.Close(); err != nil { fatalf("%s", err) } if err := fgcch.Close(); err != nil { fatalf("%s", err) } if *exportHeader != "" && len(p.ExpFunc) > 0 { fexp := creat(*exportHeader) fgcch, err := os.Open(*objDir + "_cgo_export.h") if err != nil { fatalf("%s", err) } defer fgcch.Close() _, err = io.Copy(fexp, fgcch) if err != nil { fatalf("%s", err) } if err = fexp.Close(); err != nil { fatalf("%s", err) } } init := gccgoInit.String() if init != "" { // The init function does nothing but simple // assignments, so it won't use much stack space, so // it's OK to not split the stack. Splitting the stack // can run into a bug in clang (as of 2018-11-09): // this is a leaf function, and when clang sees a leaf // function it won't emit the split stack prologue for // the function. However, if this function refers to a // non-split-stack function, which will happen if the // cgo code refers to a C function not compiled with // -fsplit-stack, then the linker will think that it // needs to adjust the split stack prologue, but there // won't be one. Marking the function explicitly // no_split_stack works around this problem by telling // the linker that it's OK if there is no split stack // prologue. fmt.Fprintln(fc, "static void init(void) __attribute__ ((constructor, no_split_stack));") fmt.Fprintln(fc, "static void init(void) {") fmt.Fprint(fc, init) fmt.Fprintln(fc, "}") } } // elfImportedSymbols is like elf.File.ImportedSymbols, but it // includes weak symbols. // // A bug in some versions of LLD (at least LLD 8) cause it to emit // several pthreads symbols as weak, but we need to import those. See // issue #31912 or https://bugs.llvm.org/show_bug.cgi?id=42442. // // When doing external linking, we hand everything off to the external // linker, which will create its own dynamic symbol tables. For // internal linking, this may turn weak imports into strong imports, // which could cause dynamic linking to fail if a symbol really isn't // defined. However, the standard library depends on everything it // imports, and this is the primary use of dynamic symbol tables with // internal linking. func elfImportedSymbols(f *elf.File) []elf.ImportedSymbol { syms, _ := f.DynamicSymbols() var imports []elf.ImportedSymbol for _, s := range syms { if (elf.ST_BIND(s.Info) == elf.STB_GLOBAL || elf.ST_BIND(s.Info) == elf.STB_WEAK) && s.Section == elf.SHN_UNDEF { imports = append(imports, elf.ImportedSymbol{ Name: s.Name, Library: s.Library, Version: s.Version, }) } } return imports } func dynimport(obj string) { stdout := os.Stdout if *dynout != "" { f, err := os.Create(*dynout) if err != nil { fatalf("%s", err) } stdout = f } fmt.Fprintf(stdout, "package %s\n", *dynpackage) if f, err := elf.Open(obj); err == nil { if *dynlinker { // Emit the cgo_dynamic_linker line. if sec := f.Section(".interp"); sec != nil { if data, err := sec.Data(); err == nil && len(data) > 1 { // skip trailing \0 in data fmt.Fprintf(stdout, "//go:cgo_dynamic_linker %q\n", string(data[:len(data)-1])) } } } sym := elfImportedSymbols(f) for _, s := range sym { targ := s.Name if s.Version != "" { targ += "#" + s.Version } checkImportSymName(s.Name) checkImportSymName(targ) fmt.Fprintf(stdout, "//go:cgo_import_dynamic %s %s %q\n", s.Name, targ, s.Library) } lib, _ := f.ImportedLibraries() for _, l := range lib { fmt.Fprintf(stdout, "//go:cgo_import_dynamic _ _ %q\n", l) } return } if f, err := macho.Open(obj); err == nil { sym, _ := f.ImportedSymbols() for _, s := range sym { if len(s) > 0 && s[0] == '_' { s = s[1:] } checkImportSymName(s) fmt.Fprintf(stdout, "//go:cgo_import_dynamic %s %s %q\n", s, s, "") } lib, _ := f.ImportedLibraries() for _, l := range lib { fmt.Fprintf(stdout, "//go:cgo_import_dynamic _ _ %q\n", l) } return } if f, err := pe.Open(obj); err == nil { sym, _ := f.ImportedSymbols() for _, s := range sym { ss := strings.Split(s, ":") name := strings.Split(ss[0], "@")[0] checkImportSymName(name) checkImportSymName(ss[0]) fmt.Fprintf(stdout, "//go:cgo_import_dynamic %s %s %q\n", name, ss[0], strings.ToLower(ss[1])) } return } if f, err := xcoff.Open(obj); err == nil { sym, err := f.ImportedSymbols() if err != nil { fatalf("cannot load imported symbols from XCOFF file %s: %v", obj, err) } for _, s := range sym { if s.Name == "runtime_rt0_go" || s.Name == "_rt0_ppc64_aix_lib" { // These symbols are imported by runtime/cgo but // must not be added to _cgo_import.go as there are // Go symbols. continue } checkImportSymName(s.Name) fmt.Fprintf(stdout, "//go:cgo_import_dynamic %s %s %q\n", s.Name, s.Name, s.Library) } lib, err := f.ImportedLibraries() if err != nil { fatalf("cannot load imported libraries from XCOFF file %s: %v", obj, err) } for _, l := range lib { fmt.Fprintf(stdout, "//go:cgo_import_dynamic _ _ %q\n", l) } return } fatalf("cannot parse %s as ELF, Mach-O, PE or XCOFF", obj) } // checkImportSymName checks a symbol name we are going to emit as part // of a //go:cgo_import_dynamic pragma. These names come from object // files, so they may be corrupt. We are going to emit them unquoted, // so while they don't need to be valid symbol names (and in some cases, // involving symbol versions, they won't be) they must contain only // graphic characters and must not contain Go comments. func checkImportSymName(s string) { for _, c := range s { if !unicode.IsGraphic(c) || unicode.IsSpace(c) { fatalf("dynamic symbol %q contains unsupported character", s) } } if strings.Contains(s, "//") || strings.Contains(s, "/*") { fatalf("dynamic symbol %q contains Go comment") } } // Construct a gcc struct matching the gc argument frame. // Assumes that in gcc, char is 1 byte, short 2 bytes, int 4 bytes, long long 8 bytes. // These assumptions are checked by the gccProlog. // Also assumes that gc convention is to word-align the // input and output parameters. func (p *Package) structType(n *Name) (string, int64) { var buf strings.Builder fmt.Fprint(&buf, "struct {\n") off := int64(0) for i, t := range n.FuncType.Params { if off%t.Align != 0 { pad := t.Align - off%t.Align fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad) off += pad } c := t.Typedef if c == "" { c = t.C.String() } fmt.Fprintf(&buf, "\t\t%s p%d;\n", c, i) off += t.Size } if off%p.PtrSize != 0 { pad := p.PtrSize - off%p.PtrSize fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad) off += pad } if t := n.FuncType.Result; t != nil { if off%t.Align != 0 { pad := t.Align - off%t.Align fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad) off += pad } fmt.Fprintf(&buf, "\t\t%s r;\n", t.C) off += t.Size } if off%p.PtrSize != 0 { pad := p.PtrSize - off%p.PtrSize fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad) off += pad } if off == 0 { fmt.Fprintf(&buf, "\t\tchar unused;\n") // avoid empty struct } fmt.Fprintf(&buf, "\t}") return buf.String(), off } func (p *Package) writeDefsFunc(fgo2 io.Writer, n *Name, callsMalloc *bool) { name := n.Go gtype := n.FuncType.Go void := gtype.Results == nil || len(gtype.Results.List) == 0 if n.AddError { // Add "error" to return type list. // Type list is known to be 0 or 1 element - it's a C function. err := &ast.Field{Type: ast.NewIdent("error")} l := gtype.Results.List if len(l) == 0 { l = []*ast.Field{err} } else { l = []*ast.Field{l[0], err} } t := new(ast.FuncType) *t = *gtype t.Results = &ast.FieldList{List: l} gtype = t } // Go func declaration. d := &ast.FuncDecl{ Name: ast.NewIdent(n.Mangle), Type: gtype, } // Builtins defined in the C prolog. inProlog := builtinDefs[name] != "" cname := fmt.Sprintf("_cgo%s%s", cPrefix, n.Mangle) paramnames := []string(nil) if d.Type.Params != nil { for i, param := range d.Type.Params.List { paramName := fmt.Sprintf("p%d", i) param.Names = []*ast.Ident{ast.NewIdent(paramName)} paramnames = append(paramnames, paramName) } } if *gccgo { // Gccgo style hooks. fmt.Fprint(fgo2, "\n") conf.Fprint(fgo2, fset, d) fmt.Fprint(fgo2, " {\n") if !inProlog { fmt.Fprint(fgo2, "\tdefer syscall.CgocallDone()\n") fmt.Fprint(fgo2, "\tsyscall.Cgocall()\n") } if n.AddError { fmt.Fprint(fgo2, "\tsyscall.SetErrno(0)\n") } fmt.Fprint(fgo2, "\t") if !void { fmt.Fprint(fgo2, "r := ") } fmt.Fprintf(fgo2, "%s(%s)\n", cname, strings.Join(paramnames, ", ")) if n.AddError { fmt.Fprint(fgo2, "\te := syscall.GetErrno()\n") fmt.Fprint(fgo2, "\tif e != 0 {\n") fmt.Fprint(fgo2, "\t\treturn ") if !void { fmt.Fprint(fgo2, "r, ") } fmt.Fprint(fgo2, "e\n") fmt.Fprint(fgo2, "\t}\n") fmt.Fprint(fgo2, "\treturn ") if !void { fmt.Fprint(fgo2, "r, ") } fmt.Fprint(fgo2, "nil\n") } else if !void { fmt.Fprint(fgo2, "\treturn r\n") } fmt.Fprint(fgo2, "}\n") // declare the C function. fmt.Fprintf(fgo2, "//extern %s\n", cname) d.Name = ast.NewIdent(cname) if n.AddError { l := d.Type.Results.List d.Type.Results.List = l[:len(l)-1] } conf.Fprint(fgo2, fset, d) fmt.Fprint(fgo2, "\n") return } if inProlog { fmt.Fprint(fgo2, builtinDefs[name]) if strings.Contains(builtinDefs[name], "_cgo_cmalloc") { *callsMalloc = true } return } // Wrapper calls into gcc, passing a pointer to the argument frame. fmt.Fprintf(fgo2, "//go:cgo_import_static %s\n", cname) fmt.Fprintf(fgo2, "//go:linkname __cgofn_%s %s\n", cname, cname) fmt.Fprintf(fgo2, "var __cgofn_%s byte\n", cname) fmt.Fprintf(fgo2, "var %s = unsafe.Pointer(&__cgofn_%s)\n", cname, cname) nret := 0 if !void { d.Type.Results.List[0].Names = []*ast.Ident{ast.NewIdent("r1")} nret = 1 } if n.AddError { d.Type.Results.List[nret].Names = []*ast.Ident{ast.NewIdent("r2")} } fmt.Fprint(fgo2, "\n") fmt.Fprint(fgo2, "//go:cgo_unsafe_args\n") conf.Fprint(fgo2, fset, d) fmt.Fprint(fgo2, " {\n") // NOTE: Using uintptr to hide from escape analysis. arg := "0" if len(paramnames) > 0 { arg = "uintptr(unsafe.Pointer(&p0))" } else if !void { arg = "uintptr(unsafe.Pointer(&r1))" } noCallback := p.noCallbacks[n.C] if noCallback { // disable cgocallback, will check it in runtime. fmt.Fprintf(fgo2, "\t_Cgo_no_callback(true)\n") } prefix := "" if n.AddError { prefix = "errno := " } fmt.Fprintf(fgo2, "\t%s_cgo_runtime_cgocall(%s, %s)\n", prefix, cname, arg) if n.AddError { fmt.Fprintf(fgo2, "\tif errno != 0 { r2 = syscall.Errno(errno) }\n") } if noCallback { fmt.Fprintf(fgo2, "\t_Cgo_no_callback(false)\n") } // skip _Cgo_use when noescape exist, // so that the compiler won't force to escape them to heap. if !p.noEscapes[n.C] { fmt.Fprintf(fgo2, "\tif _Cgo_always_false {\n") if d.Type.Params != nil { for i := range d.Type.Params.List { fmt.Fprintf(fgo2, "\t\t_Cgo_use(p%d)\n", i) } } fmt.Fprintf(fgo2, "\t}\n") } fmt.Fprintf(fgo2, "\treturn\n") fmt.Fprintf(fgo2, "}\n") } // writeOutput creates stubs for a specific source file to be compiled by gc func (p *Package) writeOutput(f *File, srcfile string) { base := srcfile base = strings.TrimSuffix(base, ".go") base = filepath.Base(base) fgo1 := creat(*objDir + base + ".cgo1.go") fgcc := creat(*objDir + base + ".cgo2.c") p.GoFiles = append(p.GoFiles, base+".cgo1.go") p.GccFiles = append(p.GccFiles, base+".cgo2.c") // Write Go output: Go input with rewrites of C.xxx to _C_xxx. fmt.Fprintf(fgo1, "// Code generated by cmd/cgo; DO NOT EDIT.\n\n") if strings.ContainsAny(srcfile, "\r\n") { // This should have been checked when the file path was first resolved, // but we double check here just to be sure. fatalf("internal error: writeOutput: srcfile contains unexpected newline character: %q", srcfile) } fmt.Fprintf(fgo1, "//line %s:1:1\n", srcfile) fgo1.Write(f.Edit.Bytes()) // While we process the vars and funcs, also write gcc output. // Gcc output starts with the preamble. fmt.Fprintf(fgcc, "%s\n", builtinProlog) fmt.Fprintf(fgcc, "%s\n", f.Preamble) fmt.Fprintf(fgcc, "%s\n", gccProlog) fmt.Fprintf(fgcc, "%s\n", tsanProlog) fmt.Fprintf(fgcc, "%s\n", msanProlog) for _, key := range nameKeys(f.Name) { n := f.Name[key] if n.FuncType != nil { p.writeOutputFunc(fgcc, n) } } fgo1.Close() fgcc.Close() } // fixGo converts the internal Name.Go field into the name we should show // to users in error messages. There's only one for now: on input we rewrite // C.malloc into C._CMalloc, so change it back here. func fixGo(name string) string { if name == "_CMalloc" { return "malloc" } return name } var isBuiltin = map[string]bool{ "_Cfunc_CString": true, "_Cfunc_CBytes": true, "_Cfunc_GoString": true, "_Cfunc_GoStringN": true, "_Cfunc_GoBytes": true, "_Cfunc__CMalloc": true, } func (p *Package) writeOutputFunc(fgcc *os.File, n *Name) { name := n.Mangle if isBuiltin[name] || p.Written[name] { // The builtins are already defined in the C prolog, and we don't // want to duplicate function definitions we've already done. return } p.Written[name] = true if *gccgo { p.writeGccgoOutputFunc(fgcc, n) return } ctype, _ := p.structType(n) // Gcc wrapper unpacks the C argument struct // and calls the actual C function. fmt.Fprintf(fgcc, "CGO_NO_SANITIZE_THREAD\n") if n.AddError { fmt.Fprintf(fgcc, "int\n") } else { fmt.Fprintf(fgcc, "void\n") } fmt.Fprintf(fgcc, "_cgo%s%s(void *v)\n", cPrefix, n.Mangle) fmt.Fprintf(fgcc, "{\n") if n.AddError { fmt.Fprintf(fgcc, "\tint _cgo_errno;\n") } // We're trying to write a gcc struct that matches gc's layout. // Use packed attribute to force no padding in this struct in case // gcc has different packing requirements. fmt.Fprintf(fgcc, "\t%s %v *_cgo_a = v;\n", ctype, p.packedAttribute()) if n.FuncType.Result != nil { // Save the stack top for use below. fmt.Fprintf(fgcc, "\tchar *_cgo_stktop = _cgo_topofstack();\n") } tr := n.FuncType.Result if tr != nil { fmt.Fprintf(fgcc, "\t__typeof__(_cgo_a->r) _cgo_r;\n") } fmt.Fprintf(fgcc, "\t_cgo_tsan_acquire();\n") if n.AddError { fmt.Fprintf(fgcc, "\terrno = 0;\n") } fmt.Fprintf(fgcc, "\t") if tr != nil { fmt.Fprintf(fgcc, "_cgo_r = ") if c := tr.C.String(); c[len(c)-1] == '*' { fmt.Fprint(fgcc, "(__typeof__(_cgo_a->r)) ") } } if n.Kind == "macro" { fmt.Fprintf(fgcc, "%s;\n", n.C) } else { fmt.Fprintf(fgcc, "%s(", n.C) for i := range n.FuncType.Params { if i > 0 { fmt.Fprintf(fgcc, ", ") } fmt.Fprintf(fgcc, "_cgo_a->p%d", i) } fmt.Fprintf(fgcc, ");\n") } if n.AddError { fmt.Fprintf(fgcc, "\t_cgo_errno = errno;\n") } fmt.Fprintf(fgcc, "\t_cgo_tsan_release();\n") if n.FuncType.Result != nil { // The cgo call may have caused a stack copy (via a callback). // Adjust the return value pointer appropriately. fmt.Fprintf(fgcc, "\t_cgo_a = (void*)((char*)_cgo_a + (_cgo_topofstack() - _cgo_stktop));\n") // Save the return value. fmt.Fprintf(fgcc, "\t_cgo_a->r = _cgo_r;\n") // The return value is on the Go stack. If we are using msan, // and if the C value is partially or completely uninitialized, // the assignment will mark the Go stack as uninitialized. // The Go compiler does not update msan for changes to the // stack. It is possible that the stack will remain // uninitialized, and then later be used in a way that is // visible to msan, possibly leading to a false positive. // Mark the stack space as written, to avoid this problem. // See issue 26209. fmt.Fprintf(fgcc, "\t_cgo_msan_write(&_cgo_a->r, sizeof(_cgo_a->r));\n") } if n.AddError { fmt.Fprintf(fgcc, "\treturn _cgo_errno;\n") } fmt.Fprintf(fgcc, "}\n") fmt.Fprintf(fgcc, "\n") } // Write out a wrapper for a function when using gccgo. This is a // simple wrapper that just calls the real function. We only need a // wrapper to support static functions in the prologue--without a // wrapper, we can't refer to the function, since the reference is in // a different file. func (p *Package) writeGccgoOutputFunc(fgcc *os.File, n *Name) { fmt.Fprintf(fgcc, "CGO_NO_SANITIZE_THREAD\n") if t := n.FuncType.Result; t != nil { fmt.Fprintf(fgcc, "%s\n", t.C.String()) } else { fmt.Fprintf(fgcc, "void\n") } fmt.Fprintf(fgcc, "_cgo%s%s(", cPrefix, n.Mangle) for i, t := range n.FuncType.Params { if i > 0 { fmt.Fprintf(fgcc, ", ") } c := t.Typedef if c == "" { c = t.C.String() } fmt.Fprintf(fgcc, "%s p%d", c, i) } fmt.Fprintf(fgcc, ")\n") fmt.Fprintf(fgcc, "{\n") if t := n.FuncType.Result; t != nil { fmt.Fprintf(fgcc, "\t%s _cgo_r;\n", t.C.String()) } fmt.Fprintf(fgcc, "\t_cgo_tsan_acquire();\n") fmt.Fprintf(fgcc, "\t") if t := n.FuncType.Result; t != nil { fmt.Fprintf(fgcc, "_cgo_r = ") // Cast to void* to avoid warnings due to omitted qualifiers. if c := t.C.String(); c[len(c)-1] == '*' { fmt.Fprintf(fgcc, "(void*)") } } if n.Kind == "macro" { fmt.Fprintf(fgcc, "%s;\n", n.C) } else { fmt.Fprintf(fgcc, "%s(", n.C) for i := range n.FuncType.Params { if i > 0 { fmt.Fprintf(fgcc, ", ") } fmt.Fprintf(fgcc, "p%d", i) } fmt.Fprintf(fgcc, ");\n") } fmt.Fprintf(fgcc, "\t_cgo_tsan_release();\n") if t := n.FuncType.Result; t != nil { fmt.Fprintf(fgcc, "\treturn ") // Cast to void* to avoid warnings due to omitted qualifiers // and explicit incompatible struct types. if c := t.C.String(); c[len(c)-1] == '*' { fmt.Fprintf(fgcc, "(void*)") } fmt.Fprintf(fgcc, "_cgo_r;\n") } fmt.Fprintf(fgcc, "}\n") fmt.Fprintf(fgcc, "\n") } // packedAttribute returns host compiler struct attribute that will be // used to match gc's struct layout. For example, on 386 Windows, // gcc wants to 8-align int64s, but gc does not. // Use __gcc_struct__ to work around https://gcc.gnu.org/PR52991 on x86, // and https://golang.org/issue/5603. func (p *Package) packedAttribute() string { s := "__attribute__((__packed__" if !p.GccIsClang && (goarch == "amd64" || goarch == "386") { s += ", __gcc_struct__" } return s + "))" } // exportParamName returns the value of param as it should be // displayed in a c header file. If param contains any non-ASCII // characters, this function will return the character p followed by // the value of position; otherwise, this function will return the // value of param. func exportParamName(param string, position int) string { if param == "" { return fmt.Sprintf("p%d", position) } pname := param for i := 0; i < len(param); i++ { if param[i] > unicode.MaxASCII { pname = fmt.Sprintf("p%d", position) break } } return pname } // Write out the various stubs we need to support functions exported // from Go so that they are callable from C. func (p *Package) writeExports(fgo2, fm, fgcc, fgcch io.Writer) { p.writeExportHeader(fgcch) fmt.Fprintf(fgcc, "/* Code generated by cmd/cgo; DO NOT EDIT. */\n\n") fmt.Fprintf(fgcc, "#include \n") fmt.Fprintf(fgcc, "#include \"_cgo_export.h\"\n\n") // We use packed structs, but they are always aligned. // The pragmas and address-of-packed-member are only recognized as // warning groups in clang 4.0+, so ignore unknown pragmas first. fmt.Fprintf(fgcc, "#pragma GCC diagnostic ignored \"-Wunknown-pragmas\"\n") fmt.Fprintf(fgcc, "#pragma GCC diagnostic ignored \"-Wpragmas\"\n") fmt.Fprintf(fgcc, "#pragma GCC diagnostic ignored \"-Waddress-of-packed-member\"\n") fmt.Fprintf(fgcc, "#pragma GCC diagnostic ignored \"-Wunknown-warning-option\"\n") fmt.Fprintf(fgcc, "#pragma GCC diagnostic ignored \"-Wunaligned-access\"\n") fmt.Fprintf(fgcc, "extern void crosscall2(void (*fn)(void *), void *, int, size_t);\n") fmt.Fprintf(fgcc, "extern size_t _cgo_wait_runtime_init_done(void);\n") fmt.Fprintf(fgcc, "extern void _cgo_release_context(size_t);\n\n") fmt.Fprintf(fgcc, "extern char* _cgo_topofstack(void);") fmt.Fprintf(fgcc, "%s\n", tsanProlog) fmt.Fprintf(fgcc, "%s\n", msanProlog) for _, exp := range p.ExpFunc { fn := exp.Func // Construct a struct that will be used to communicate // arguments from C to Go. The C and Go definitions // just have to agree. The gcc struct will be compiled // with __attribute__((packed)) so all padding must be // accounted for explicitly. ctype := "struct {\n" gotype := new(bytes.Buffer) fmt.Fprintf(gotype, "struct {\n") off := int64(0) npad := 0 argField := func(typ ast.Expr, namePat string, args ...interface{}) { name := fmt.Sprintf(namePat, args...) t := p.cgoType(typ) if off%t.Align != 0 { pad := t.Align - off%t.Align ctype += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad) off += pad npad++ } ctype += fmt.Sprintf("\t\t%s %s;\n", t.C, name) fmt.Fprintf(gotype, "\t\t%s ", name) noSourceConf.Fprint(gotype, fset, typ) fmt.Fprintf(gotype, "\n") off += t.Size } if fn.Recv != nil { argField(fn.Recv.List[0].Type, "recv") } fntype := fn.Type forFieldList(fntype.Params, func(i int, aname string, atype ast.Expr) { argField(atype, "p%d", i) }) forFieldList(fntype.Results, func(i int, aname string, atype ast.Expr) { argField(atype, "r%d", i) }) if ctype == "struct {\n" { ctype += "\t\tchar unused;\n" // avoid empty struct } ctype += "\t}" fmt.Fprintf(gotype, "\t}") // Get the return type of the wrapper function // compiled by gcc. gccResult := "" if fntype.Results == nil || len(fntype.Results.List) == 0 { gccResult = "void" } else if len(fntype.Results.List) == 1 && len(fntype.Results.List[0].Names) <= 1 { gccResult = p.cgoType(fntype.Results.List[0].Type).C.String() } else { fmt.Fprintf(fgcch, "\n/* Return type for %s */\n", exp.ExpName) fmt.Fprintf(fgcch, "struct %s_return {\n", exp.ExpName) forFieldList(fntype.Results, func(i int, aname string, atype ast.Expr) { fmt.Fprintf(fgcch, "\t%s r%d;", p.cgoType(atype).C, i) if len(aname) > 0 { fmt.Fprintf(fgcch, " /* %s */", aname) } fmt.Fprint(fgcch, "\n") }) fmt.Fprintf(fgcch, "};\n") gccResult = "struct " + exp.ExpName + "_return" } // Build the wrapper function compiled by gcc. gccExport := "" if goos == "windows" { gccExport = "__declspec(dllexport) " } s := fmt.Sprintf("%s%s %s(", gccExport, gccResult, exp.ExpName) if fn.Recv != nil { s += p.cgoType(fn.Recv.List[0].Type).C.String() s += " recv" } forFieldList(fntype.Params, func(i int, aname string, atype ast.Expr) { if i > 0 || fn.Recv != nil { s += ", " } s += fmt.Sprintf("%s %s", p.cgoType(atype).C, exportParamName(aname, i)) }) s += ")" if len(exp.Doc) > 0 { fmt.Fprintf(fgcch, "\n%s", exp.Doc) if !strings.HasSuffix(exp.Doc, "\n") { fmt.Fprint(fgcch, "\n") } } fmt.Fprintf(fgcch, "extern %s;\n", s) fmt.Fprintf(fgcc, "extern void _cgoexp%s_%s(void *);\n", cPrefix, exp.ExpName) fmt.Fprintf(fgcc, "\nCGO_NO_SANITIZE_THREAD") fmt.Fprintf(fgcc, "\n%s\n", s) fmt.Fprintf(fgcc, "{\n") fmt.Fprintf(fgcc, "\tsize_t _cgo_ctxt = _cgo_wait_runtime_init_done();\n") // The results part of the argument structure must be // initialized to 0 so the write barriers generated by // the assignments to these fields in Go are safe. // // We use a local static variable to get the zeroed // value of the argument type. This avoids including // string.h for memset, and is also robust to C++ // types with constructors. Both GCC and LLVM optimize // this into just zeroing _cgo_a. fmt.Fprintf(fgcc, "\ttypedef %s %v _cgo_argtype;\n", ctype, p.packedAttribute()) fmt.Fprintf(fgcc, "\tstatic _cgo_argtype _cgo_zero;\n") fmt.Fprintf(fgcc, "\t_cgo_argtype _cgo_a = _cgo_zero;\n") if gccResult != "void" && (len(fntype.Results.List) > 1 || len(fntype.Results.List[0].Names) > 1) { fmt.Fprintf(fgcc, "\t%s r;\n", gccResult) } if fn.Recv != nil { fmt.Fprintf(fgcc, "\t_cgo_a.recv = recv;\n") } forFieldList(fntype.Params, func(i int, aname string, atype ast.Expr) { fmt.Fprintf(fgcc, "\t_cgo_a.p%d = %s;\n", i, exportParamName(aname, i)) }) fmt.Fprintf(fgcc, "\t_cgo_tsan_release();\n") fmt.Fprintf(fgcc, "\tcrosscall2(_cgoexp%s_%s, &_cgo_a, %d, _cgo_ctxt);\n", cPrefix, exp.ExpName, off) fmt.Fprintf(fgcc, "\t_cgo_tsan_acquire();\n") fmt.Fprintf(fgcc, "\t_cgo_release_context(_cgo_ctxt);\n") if gccResult != "void" { if len(fntype.Results.List) == 1 && len(fntype.Results.List[0].Names) <= 1 { fmt.Fprintf(fgcc, "\treturn _cgo_a.r0;\n") } else { forFieldList(fntype.Results, func(i int, aname string, atype ast.Expr) { fmt.Fprintf(fgcc, "\tr.r%d = _cgo_a.r%d;\n", i, i) }) fmt.Fprintf(fgcc, "\treturn r;\n") } } fmt.Fprintf(fgcc, "}\n") // In internal linking mode, the Go linker sees both // the C wrapper written above and the Go wrapper it // references. Hence, export the C wrapper (e.g., for // if we're building a shared object). The Go linker // will resolve the C wrapper's reference to the Go // wrapper without a separate export. fmt.Fprintf(fgo2, "//go:cgo_export_dynamic %s\n", exp.ExpName) // cgo_export_static refers to a symbol by its linker // name, so set the linker name of the Go wrapper. fmt.Fprintf(fgo2, "//go:linkname _cgoexp%s_%s _cgoexp%s_%s\n", cPrefix, exp.ExpName, cPrefix, exp.ExpName) // In external linking mode, the Go linker sees the Go // wrapper, but not the C wrapper. For this case, // export the Go wrapper so the host linker can // resolve the reference from the C wrapper to the Go // wrapper. fmt.Fprintf(fgo2, "//go:cgo_export_static _cgoexp%s_%s\n", cPrefix, exp.ExpName) // Build the wrapper function compiled by cmd/compile. // This unpacks the argument struct above and calls the Go function. fmt.Fprintf(fgo2, "func _cgoexp%s_%s(a *%s) {\n", cPrefix, exp.ExpName, gotype) fmt.Fprintf(fm, "void _cgoexp%s_%s(void* p){}\n", cPrefix, exp.ExpName) fmt.Fprintf(fgo2, "\t") if gccResult != "void" { // Write results back to frame. forFieldList(fntype.Results, func(i int, aname string, atype ast.Expr) { if i > 0 { fmt.Fprintf(fgo2, ", ") } fmt.Fprintf(fgo2, "a.r%d", i) }) fmt.Fprintf(fgo2, " = ") } if fn.Recv != nil { fmt.Fprintf(fgo2, "a.recv.") } fmt.Fprintf(fgo2, "%s(", exp.Func.Name) forFieldList(fntype.Params, func(i int, aname string, atype ast.Expr) { if i > 0 { fmt.Fprint(fgo2, ", ") } fmt.Fprintf(fgo2, "a.p%d", i) }) fmt.Fprint(fgo2, ")\n") if gccResult != "void" { // Verify that any results don't contain any // Go pointers. forFieldList(fntype.Results, func(i int, aname string, atype ast.Expr) { if !p.hasPointer(nil, atype, false) { return } fmt.Fprintf(fgo2, "\t_cgoCheckResult(a.r%d)\n", i) }) } fmt.Fprint(fgo2, "}\n") } fmt.Fprintf(fgcch, "%s", gccExportHeaderEpilog) } // Write out the C header allowing C code to call exported gccgo functions. func (p *Package) writeGccgoExports(fgo2, fm, fgcc, fgcch io.Writer) { gccgoSymbolPrefix := p.gccgoSymbolPrefix() p.writeExportHeader(fgcch) fmt.Fprintf(fgcc, "/* Code generated by cmd/cgo; DO NOT EDIT. */\n\n") fmt.Fprintf(fgcc, "#include \"_cgo_export.h\"\n") fmt.Fprintf(fgcc, "%s\n", gccgoExportFileProlog) fmt.Fprintf(fgcc, "%s\n", tsanProlog) fmt.Fprintf(fgcc, "%s\n", msanProlog) for _, exp := range p.ExpFunc { fn := exp.Func fntype := fn.Type cdeclBuf := new(strings.Builder) resultCount := 0 forFieldList(fntype.Results, func(i int, aname string, atype ast.Expr) { resultCount++ }) switch resultCount { case 0: fmt.Fprintf(cdeclBuf, "void") case 1: forFieldList(fntype.Results, func(i int, aname string, atype ast.Expr) { t := p.cgoType(atype) fmt.Fprintf(cdeclBuf, "%s", t.C) }) default: // Declare a result struct. fmt.Fprintf(fgcch, "\n/* Return type for %s */\n", exp.ExpName) fmt.Fprintf(fgcch, "struct %s_return {\n", exp.ExpName) forFieldList(fntype.Results, func(i int, aname string, atype ast.Expr) { t := p.cgoType(atype) fmt.Fprintf(fgcch, "\t%s r%d;", t.C, i) if len(aname) > 0 { fmt.Fprintf(fgcch, " /* %s */", aname) } fmt.Fprint(fgcch, "\n") }) fmt.Fprintf(fgcch, "};\n") fmt.Fprintf(cdeclBuf, "struct %s_return", exp.ExpName) } cRet := cdeclBuf.String() cdeclBuf = new(strings.Builder) fmt.Fprintf(cdeclBuf, "(") if fn.Recv != nil { fmt.Fprintf(cdeclBuf, "%s recv", p.cgoType(fn.Recv.List[0].Type).C.String()) } // Function parameters. forFieldList(fntype.Params, func(i int, aname string, atype ast.Expr) { if i > 0 || fn.Recv != nil { fmt.Fprintf(cdeclBuf, ", ") } t := p.cgoType(atype) fmt.Fprintf(cdeclBuf, "%s p%d", t.C, i) }) fmt.Fprintf(cdeclBuf, ")") cParams := cdeclBuf.String() if len(exp.Doc) > 0 { fmt.Fprintf(fgcch, "\n%s", exp.Doc) } fmt.Fprintf(fgcch, "extern %s %s%s;\n", cRet, exp.ExpName, cParams) // We need to use a name that will be exported by the // Go code; otherwise gccgo will make it static and we // will not be able to link against it from the C // code. goName := "Cgoexp_" + exp.ExpName fmt.Fprintf(fgcc, `extern %s %s %s __asm__("%s.%s");`, cRet, goName, cParams, gccgoSymbolPrefix, gccgoToSymbol(goName)) fmt.Fprint(fgcc, "\n") fmt.Fprint(fgcc, "\nCGO_NO_SANITIZE_THREAD\n") fmt.Fprintf(fgcc, "%s %s %s {\n", cRet, exp.ExpName, cParams) if resultCount > 0 { fmt.Fprintf(fgcc, "\t%s r;\n", cRet) } fmt.Fprintf(fgcc, "\tif(_cgo_wait_runtime_init_done)\n") fmt.Fprintf(fgcc, "\t\t_cgo_wait_runtime_init_done();\n") fmt.Fprintf(fgcc, "\t_cgo_tsan_release();\n") fmt.Fprint(fgcc, "\t") if resultCount > 0 { fmt.Fprint(fgcc, "r = ") } fmt.Fprintf(fgcc, "%s(", goName) if fn.Recv != nil { fmt.Fprint(fgcc, "recv") } forFieldList(fntype.Params, func(i int, aname string, atype ast.Expr) { if i > 0 || fn.Recv != nil { fmt.Fprintf(fgcc, ", ") } fmt.Fprintf(fgcc, "p%d", i) }) fmt.Fprint(fgcc, ");\n") fmt.Fprintf(fgcc, "\t_cgo_tsan_acquire();\n") if resultCount > 0 { fmt.Fprint(fgcc, "\treturn r;\n") } fmt.Fprint(fgcc, "}\n") // Dummy declaration for _cgo_main.c fmt.Fprintf(fm, `char %s[1] __asm__("%s.%s");`, goName, gccgoSymbolPrefix, gccgoToSymbol(goName)) fmt.Fprint(fm, "\n") // For gccgo we use a wrapper function in Go, in order // to call CgocallBack and CgocallBackDone. // This code uses printer.Fprint, not conf.Fprint, // because we don't want //line comments in the middle // of the function types. fmt.Fprint(fgo2, "\n") fmt.Fprintf(fgo2, "func %s(", goName) if fn.Recv != nil { fmt.Fprint(fgo2, "recv ") printer.Fprint(fgo2, fset, fn.Recv.List[0].Type) } forFieldList(fntype.Params, func(i int, aname string, atype ast.Expr) { if i > 0 || fn.Recv != nil { fmt.Fprintf(fgo2, ", ") } fmt.Fprintf(fgo2, "p%d ", i) printer.Fprint(fgo2, fset, atype) }) fmt.Fprintf(fgo2, ")") if resultCount > 0 { fmt.Fprintf(fgo2, " (") forFieldList(fntype.Results, func(i int, aname string, atype ast.Expr) { if i > 0 { fmt.Fprint(fgo2, ", ") } printer.Fprint(fgo2, fset, atype) }) fmt.Fprint(fgo2, ")") } fmt.Fprint(fgo2, " {\n") fmt.Fprint(fgo2, "\tsyscall.CgocallBack()\n") fmt.Fprint(fgo2, "\tdefer syscall.CgocallBackDone()\n") fmt.Fprint(fgo2, "\t") if resultCount > 0 { fmt.Fprint(fgo2, "return ") } if fn.Recv != nil { fmt.Fprint(fgo2, "recv.") } fmt.Fprintf(fgo2, "%s(", exp.Func.Name) forFieldList(fntype.Params, func(i int, aname string, atype ast.Expr) { if i > 0 { fmt.Fprint(fgo2, ", ") } fmt.Fprintf(fgo2, "p%d", i) }) fmt.Fprint(fgo2, ")\n") fmt.Fprint(fgo2, "}\n") } fmt.Fprintf(fgcch, "%s", gccExportHeaderEpilog) } // writeExportHeader writes out the start of the _cgo_export.h file. func (p *Package) writeExportHeader(fgcch io.Writer) { fmt.Fprintf(fgcch, "/* Code generated by cmd/cgo; DO NOT EDIT. */\n\n") pkg := *importPath if pkg == "" { pkg = p.PackagePath } fmt.Fprintf(fgcch, "/* package %s */\n\n", pkg) fmt.Fprintf(fgcch, "%s\n", builtinExportProlog) // Remove absolute paths from #line comments in the preamble. // They aren't useful for people using the header file, // and they mean that the header files change based on the // exact location of GOPATH. re := regexp.MustCompile(`(?m)^(#line\s+\d+\s+")[^"]*[/\\]([^"]*")`) preamble := re.ReplaceAllString(p.Preamble, "$1$2") fmt.Fprintf(fgcch, "/* Start of preamble from import \"C\" comments. */\n\n") fmt.Fprintf(fgcch, "%s\n", preamble) fmt.Fprintf(fgcch, "\n/* End of preamble from import \"C\" comments. */\n\n") fmt.Fprintf(fgcch, "%s\n", p.gccExportHeaderProlog()) } // gccgoToSymbol converts a name to a mangled symbol for gccgo. func gccgoToSymbol(ppath string) string { if gccgoMangler == nil { var err error cmd := os.Getenv("GCCGO") if cmd == "" { cmd, err = exec.LookPath("gccgo") if err != nil { fatalf("unable to locate gccgo: %v", err) } } gccgoMangler, err = pkgpath.ToSymbolFunc(cmd, *objDir) if err != nil { fatalf("%v", err) } } return gccgoMangler(ppath) } // Return the package prefix when using gccgo. func (p *Package) gccgoSymbolPrefix() string { if !*gccgo { return "" } if *gccgopkgpath != "" { return gccgoToSymbol(*gccgopkgpath) } if *gccgoprefix == "" && p.PackageName == "main" { return "main" } prefix := gccgoToSymbol(*gccgoprefix) if prefix == "" { prefix = "go" } return prefix + "." + p.PackageName } // Call a function for each entry in an ast.FieldList, passing the // index into the list, the name if any, and the type. func forFieldList(fl *ast.FieldList, fn func(int, string, ast.Expr)) { if fl == nil { return } i := 0 for _, r := range fl.List { if r.Names == nil { fn(i, "", r.Type) i++ } else { for _, n := range r.Names { fn(i, n.Name, r.Type) i++ } } } } func c(repr string, args ...interface{}) *TypeRepr { return &TypeRepr{repr, args} } // Map predeclared Go types to Type. var goTypes = map[string]*Type{ "bool": {Size: 1, Align: 1, C: c("GoUint8")}, "byte": {Size: 1, Align: 1, C: c("GoUint8")}, "int": {Size: 0, Align: 0, C: c("GoInt")}, "uint": {Size: 0, Align: 0, C: c("GoUint")}, "rune": {Size: 4, Align: 4, C: c("GoInt32")}, "int8": {Size: 1, Align: 1, C: c("GoInt8")}, "uint8": {Size: 1, Align: 1, C: c("GoUint8")}, "int16": {Size: 2, Align: 2, C: c("GoInt16")}, "uint16": {Size: 2, Align: 2, C: c("GoUint16")}, "int32": {Size: 4, Align: 4, C: c("GoInt32")}, "uint32": {Size: 4, Align: 4, C: c("GoUint32")}, "int64": {Size: 8, Align: 8, C: c("GoInt64")}, "uint64": {Size: 8, Align: 8, C: c("GoUint64")}, "float32": {Size: 4, Align: 4, C: c("GoFloat32")}, "float64": {Size: 8, Align: 8, C: c("GoFloat64")}, "complex64": {Size: 8, Align: 4, C: c("GoComplex64")}, "complex128": {Size: 16, Align: 8, C: c("GoComplex128")}, } // Map an ast type to a Type. func (p *Package) cgoType(e ast.Expr) *Type { switch t := e.(type) { case *ast.StarExpr: x := p.cgoType(t.X) return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("%s*", x.C)} case *ast.ArrayType: if t.Len == nil { // Slice: pointer, len, cap. return &Type{Size: p.PtrSize * 3, Align: p.PtrSize, C: c("GoSlice")} } // Non-slice array types are not supported. case *ast.StructType: // Not supported. case *ast.FuncType: return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("void*")} case *ast.InterfaceType: return &Type{Size: 2 * p.PtrSize, Align: p.PtrSize, C: c("GoInterface")} case *ast.MapType: return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("GoMap")} case *ast.ChanType: return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("GoChan")} case *ast.Ident: goTypesFixup := func(r *Type) *Type { if r.Size == 0 { // int or uint rr := new(Type) *rr = *r rr.Size = p.IntSize rr.Align = p.IntSize r = rr } if r.Align > p.PtrSize { r.Align = p.PtrSize } return r } // Look up the type in the top level declarations. // TODO: Handle types defined within a function. for _, d := range p.Decl { gd, ok := d.(*ast.GenDecl) if !ok || gd.Tok != token.TYPE { continue } for _, spec := range gd.Specs { ts, ok := spec.(*ast.TypeSpec) if !ok { continue } if ts.Name.Name == t.Name { return p.cgoType(ts.Type) } } } if def := typedef[t.Name]; def != nil { if defgo, ok := def.Go.(*ast.Ident); ok { switch defgo.Name { case "complex64", "complex128": // MSVC does not support the _Complex keyword // nor the complex macro. // Use GoComplex64 and GoComplex128 instead, // which are typedef-ed to a compatible type. // See go.dev/issues/36233. return goTypesFixup(goTypes[defgo.Name]) } } return def } if t.Name == "uintptr" { return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("GoUintptr")} } if t.Name == "string" { // The string data is 1 pointer + 1 (pointer-sized) int. return &Type{Size: 2 * p.PtrSize, Align: p.PtrSize, C: c("GoString")} } if t.Name == "error" { return &Type{Size: 2 * p.PtrSize, Align: p.PtrSize, C: c("GoInterface")} } if r, ok := goTypes[t.Name]; ok { return goTypesFixup(r) } error_(e.Pos(), "unrecognized Go type %s", t.Name) return &Type{Size: 4, Align: 4, C: c("int")} case *ast.SelectorExpr: id, ok := t.X.(*ast.Ident) if ok && id.Name == "unsafe" && t.Sel.Name == "Pointer" { return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("void*")} } } error_(e.Pos(), "Go type not supported in export: %s", gofmt(e)) return &Type{Size: 4, Align: 4, C: c("int")} } const gccProlog = ` #line 1 "cgo-gcc-prolog" /* If x and y are not equal, the type will be invalid (have a negative array count) and an inscrutable error will come out of the compiler and hopefully mention "name". */ #define __cgo_compile_assert_eq(x, y, name) typedef char name[(x-y)*(x-y)*-2UL+1UL]; /* Check at compile time that the sizes we use match our expectations. */ #define __cgo_size_assert(t, n) __cgo_compile_assert_eq(sizeof(t), (size_t)n, _cgo_sizeof_##t##_is_not_##n) __cgo_size_assert(char, 1) __cgo_size_assert(short, 2) __cgo_size_assert(int, 4) typedef long long __cgo_long_long; __cgo_size_assert(__cgo_long_long, 8) __cgo_size_assert(float, 4) __cgo_size_assert(double, 8) extern char* _cgo_topofstack(void); /* We use packed structs, but they are always aligned. The pragmas and address-of-packed-member are only recognized as warning groups in clang 4.0+, so ignore unknown pragmas first. */ #pragma GCC diagnostic ignored "-Wunknown-pragmas" #pragma GCC diagnostic ignored "-Wpragmas" #pragma GCC diagnostic ignored "-Waddress-of-packed-member" #pragma GCC diagnostic ignored "-Wunknown-warning-option" #pragma GCC diagnostic ignored "-Wunaligned-access" #include #include ` // Prologue defining TSAN functions in C. const noTsanProlog = ` #define CGO_NO_SANITIZE_THREAD #define _cgo_tsan_acquire() #define _cgo_tsan_release() ` // This must match the TSAN code in runtime/cgo/libcgo.h. // This is used when the code is built with the C/C++ Thread SANitizer, // which is not the same as the Go race detector. // __tsan_acquire tells TSAN that we are acquiring a lock on a variable, // in this case _cgo_sync. __tsan_release releases the lock. // (There is no actual lock, we are just telling TSAN that there is.) // // When we call from Go to C we call _cgo_tsan_acquire. // When the C function returns we call _cgo_tsan_release. // Similarly, when C calls back into Go we call _cgo_tsan_release // and then call _cgo_tsan_acquire when we return to C. // These calls tell TSAN that there is a serialization point at the C call. // // This is necessary because TSAN, which is a C/C++ tool, can not see // the synchronization in the Go code. Without these calls, when // multiple goroutines call into C code, TSAN does not understand // that the calls are properly synchronized on the Go side. // // To be clear, if the calls are not properly synchronized on the Go side, // we will be hiding races. But when using TSAN on mixed Go C/C++ code // it is more important to avoid false positives, which reduce confidence // in the tool, than to avoid false negatives. const yesTsanProlog = ` #line 1 "cgo-tsan-prolog" #define CGO_NO_SANITIZE_THREAD __attribute__ ((no_sanitize_thread)) long long _cgo_sync __attribute__ ((common)); extern void __tsan_acquire(void*); extern void __tsan_release(void*); __attribute__ ((unused)) static void _cgo_tsan_acquire() { __tsan_acquire(&_cgo_sync); } __attribute__ ((unused)) static void _cgo_tsan_release() { __tsan_release(&_cgo_sync); } ` // Set to yesTsanProlog if we see -fsanitize=thread in the flags for gcc. var tsanProlog = noTsanProlog // noMsanProlog is a prologue defining an MSAN function in C. // This is used when not compiling with -fsanitize=memory. const noMsanProlog = ` #define _cgo_msan_write(addr, sz) ` // yesMsanProlog is a prologue defining an MSAN function in C. // This is used when compiling with -fsanitize=memory. // See the comment above where _cgo_msan_write is called. const yesMsanProlog = ` extern void __msan_unpoison(const volatile void *, size_t); #define _cgo_msan_write(addr, sz) __msan_unpoison((addr), (sz)) ` // msanProlog is set to yesMsanProlog if we see -fsanitize=memory in the flags // for the C compiler. var msanProlog = noMsanProlog const builtinProlog = ` #line 1 "cgo-builtin-prolog" #include /* Define intgo when compiling with GCC. */ typedef ptrdiff_t intgo; #define GO_CGO_GOSTRING_TYPEDEF typedef struct { const char *p; intgo n; } _GoString_; typedef struct { char *p; intgo n; intgo c; } _GoBytes_; _GoString_ GoString(char *p); _GoString_ GoStringN(char *p, int l); _GoBytes_ GoBytes(void *p, int n); char *CString(_GoString_); void *CBytes(_GoBytes_); void *_CMalloc(size_t); __attribute__ ((unused)) static size_t _GoStringLen(_GoString_ s) { return (size_t)s.n; } __attribute__ ((unused)) static const char *_GoStringPtr(_GoString_ s) { return s.p; } ` const goProlog = ` //go:linkname _cgo_runtime_cgocall runtime.cgocall func _cgo_runtime_cgocall(unsafe.Pointer, uintptr) int32 //go:linkname _cgoCheckPointer runtime.cgoCheckPointer //go:noescape func _cgoCheckPointer(interface{}, interface{}) //go:linkname _cgoCheckResult runtime.cgoCheckResult //go:noescape func _cgoCheckResult(interface{}) ` const gccgoGoProlog = ` func _cgoCheckPointer(interface{}, interface{}) func _cgoCheckResult(interface{}) ` const goStringDef = ` //go:linkname _cgo_runtime_gostring runtime.gostring func _cgo_runtime_gostring(*_Ctype_char) string // GoString converts the C string p into a Go string. func _Cfunc_GoString(p *_Ctype_char) string { return _cgo_runtime_gostring(p) } ` const goStringNDef = ` //go:linkname _cgo_runtime_gostringn runtime.gostringn func _cgo_runtime_gostringn(*_Ctype_char, int) string // GoStringN converts the C data p with explicit length l to a Go string. func _Cfunc_GoStringN(p *_Ctype_char, l _Ctype_int) string { return _cgo_runtime_gostringn(p, int(l)) } ` const goBytesDef = ` //go:linkname _cgo_runtime_gobytes runtime.gobytes func _cgo_runtime_gobytes(unsafe.Pointer, int) []byte // GoBytes converts the C data p with explicit length l to a Go []byte. func _Cfunc_GoBytes(p unsafe.Pointer, l _Ctype_int) []byte { return _cgo_runtime_gobytes(p, int(l)) } ` const cStringDef = ` // CString converts the Go string s to a C string. // // The C string is allocated in the C heap using malloc. // It is the caller's responsibility to arrange for it to be // freed, such as by calling C.free (be sure to include stdlib.h // if C.free is needed). func _Cfunc_CString(s string) *_Ctype_char { if len(s)+1 <= 0 { panic("string too large") } p := _cgo_cmalloc(uint64(len(s)+1)) sliceHeader := struct { p unsafe.Pointer len int cap int }{p, len(s)+1, len(s)+1} b := *(*[]byte)(unsafe.Pointer(&sliceHeader)) copy(b, s) b[len(s)] = 0 return (*_Ctype_char)(p) } ` const cBytesDef = ` // CBytes converts the Go []byte slice b to a C array. // // The C array is allocated in the C heap using malloc. // It is the caller's responsibility to arrange for it to be // freed, such as by calling C.free (be sure to include stdlib.h // if C.free is needed). func _Cfunc_CBytes(b []byte) unsafe.Pointer { p := _cgo_cmalloc(uint64(len(b))) sliceHeader := struct { p unsafe.Pointer len int cap int }{p, len(b), len(b)} s := *(*[]byte)(unsafe.Pointer(&sliceHeader)) copy(s, b) return p } ` const cMallocDef = ` func _Cfunc__CMalloc(n _Ctype_size_t) unsafe.Pointer { return _cgo_cmalloc(uint64(n)) } ` var builtinDefs = map[string]string{ "GoString": goStringDef, "GoStringN": goStringNDef, "GoBytes": goBytesDef, "CString": cStringDef, "CBytes": cBytesDef, "_CMalloc": cMallocDef, } // Definitions for C.malloc in Go and in C. We define it ourselves // since we call it from functions we define, such as C.CString. // Also, we have historically ensured that C.malloc does not return // nil even for an allocation of 0. const cMallocDefGo = ` //go:cgo_import_static _cgoPREFIX_Cfunc__Cmalloc //go:linkname __cgofn__cgoPREFIX_Cfunc__Cmalloc _cgoPREFIX_Cfunc__Cmalloc var __cgofn__cgoPREFIX_Cfunc__Cmalloc byte var _cgoPREFIX_Cfunc__Cmalloc = unsafe.Pointer(&__cgofn__cgoPREFIX_Cfunc__Cmalloc) //go:linkname runtime_throw runtime.throw func runtime_throw(string) //go:cgo_unsafe_args func _cgo_cmalloc(p0 uint64) (r1 unsafe.Pointer) { _cgo_runtime_cgocall(_cgoPREFIX_Cfunc__Cmalloc, uintptr(unsafe.Pointer(&p0))) if r1 == nil { runtime_throw("runtime: C malloc failed") } return } ` // cMallocDefC defines the C version of C.malloc for the gc compiler. // It is defined here because C.CString and friends need a definition. // We define it by hand, rather than simply inventing a reference to // C.malloc, because may not have been included. // This is approximately what writeOutputFunc would generate, but // skips the cgo_topofstack code (which is only needed if the C code // calls back into Go). This also avoids returning nil for an // allocation of 0 bytes. const cMallocDefC = ` CGO_NO_SANITIZE_THREAD void _cgoPREFIX_Cfunc__Cmalloc(void *v) { struct { unsigned long long p0; void *r1; } PACKED *a = v; void *ret; _cgo_tsan_acquire(); ret = malloc(a->p0); if (ret == 0 && a->p0 == 0) { ret = malloc(1); } a->r1 = ret; _cgo_tsan_release(); } ` func (p *Package) cPrologGccgo() string { r := strings.NewReplacer( "PREFIX", cPrefix, "GCCGOSYMBOLPREF", p.gccgoSymbolPrefix(), "_cgoCheckPointer", gccgoToSymbol("_cgoCheckPointer"), "_cgoCheckResult", gccgoToSymbol("_cgoCheckResult")) return r.Replace(cPrologGccgo) } const cPrologGccgo = ` #line 1 "cgo-c-prolog-gccgo" #include #include #include typedef unsigned char byte; typedef intptr_t intgo; struct __go_string { const unsigned char *__data; intgo __length; }; typedef struct __go_open_array { void* __values; intgo __count; intgo __capacity; } Slice; struct __go_string __go_byte_array_to_string(const void* p, intgo len); struct __go_open_array __go_string_to_byte_array (struct __go_string str); extern void runtime_throw(const char *); const char *_cgoPREFIX_Cfunc_CString(struct __go_string s) { char *p = malloc(s.__length+1); if(p == NULL) runtime_throw("runtime: C malloc failed"); memmove(p, s.__data, s.__length); p[s.__length] = 0; return p; } void *_cgoPREFIX_Cfunc_CBytes(struct __go_open_array b) { char *p = malloc(b.__count); if(p == NULL) runtime_throw("runtime: C malloc failed"); memmove(p, b.__values, b.__count); return p; } struct __go_string _cgoPREFIX_Cfunc_GoString(char *p) { intgo len = (p != NULL) ? strlen(p) : 0; return __go_byte_array_to_string(p, len); } struct __go_string _cgoPREFIX_Cfunc_GoStringN(char *p, int32_t n) { return __go_byte_array_to_string(p, n); } Slice _cgoPREFIX_Cfunc_GoBytes(char *p, int32_t n) { struct __go_string s = { (const unsigned char *)p, n }; return __go_string_to_byte_array(s); } void *_cgoPREFIX_Cfunc__CMalloc(size_t n) { void *p = malloc(n); if(p == NULL && n == 0) p = malloc(1); if(p == NULL) runtime_throw("runtime: C malloc failed"); return p; } struct __go_type_descriptor; typedef struct __go_empty_interface { const struct __go_type_descriptor *__type_descriptor; void *__object; } Eface; extern void runtimeCgoCheckPointer(Eface, Eface) __asm__("runtime.cgoCheckPointer") __attribute__((weak)); extern void localCgoCheckPointer(Eface, Eface) __asm__("GCCGOSYMBOLPREF._cgoCheckPointer"); void localCgoCheckPointer(Eface ptr, Eface arg) { if(runtimeCgoCheckPointer) { runtimeCgoCheckPointer(ptr, arg); } } extern void runtimeCgoCheckResult(Eface) __asm__("runtime.cgoCheckResult") __attribute__((weak)); extern void localCgoCheckResult(Eface) __asm__("GCCGOSYMBOLPREF._cgoCheckResult"); void localCgoCheckResult(Eface val) { if(runtimeCgoCheckResult) { runtimeCgoCheckResult(val); } } ` // builtinExportProlog is a shorter version of builtinProlog, // to be put into the _cgo_export.h file. // For historical reasons we can't use builtinProlog in _cgo_export.h, // because _cgo_export.h defines GoString as a struct while builtinProlog // defines it as a function. We don't change this to avoid unnecessarily // breaking existing code. // The test of GO_CGO_GOSTRING_TYPEDEF avoids a duplicate definition // error if a Go file with a cgo comment #include's the export header // generated by a different package. const builtinExportProlog = ` #line 1 "cgo-builtin-export-prolog" #include #ifndef GO_CGO_EXPORT_PROLOGUE_H #define GO_CGO_EXPORT_PROLOGUE_H #ifndef GO_CGO_GOSTRING_TYPEDEF typedef struct { const char *p; ptrdiff_t n; } _GoString_; #endif #endif ` func (p *Package) gccExportHeaderProlog() string { return strings.Replace(gccExportHeaderProlog, "GOINTBITS", fmt.Sprint(8*p.IntSize), -1) } // gccExportHeaderProlog is written to the exported header, after the // import "C" comment preamble but before the generated declarations // of exported functions. This permits the generated declarations to // use the type names that appear in goTypes, above. // // The test of GO_CGO_GOSTRING_TYPEDEF avoids a duplicate definition // error if a Go file with a cgo comment #include's the export header // generated by a different package. Unfortunately GoString means two // different things: in this prolog it means a C name for the Go type, // while in the prolog written into the start of the C code generated // from a cgo-using Go file it means the C.GoString function. There is // no way to resolve this conflict, but it also doesn't make much // difference, as Go code never wants to refer to the latter meaning. const gccExportHeaderProlog = ` /* Start of boilerplate cgo prologue. */ #line 1 "cgo-gcc-export-header-prolog" #ifndef GO_CGO_PROLOGUE_H #define GO_CGO_PROLOGUE_H typedef signed char GoInt8; typedef unsigned char GoUint8; typedef short GoInt16; typedef unsigned short GoUint16; typedef int GoInt32; typedef unsigned int GoUint32; typedef long long GoInt64; typedef unsigned long long GoUint64; typedef GoIntGOINTBITS GoInt; typedef GoUintGOINTBITS GoUint; typedef size_t GoUintptr; typedef float GoFloat32; typedef double GoFloat64; #ifdef _MSC_VER #include typedef _Fcomplex GoComplex64; typedef _Dcomplex GoComplex128; #else typedef float _Complex GoComplex64; typedef double _Complex GoComplex128; #endif /* static assertion to make sure the file is being used on architecture at least with matching size of GoInt. */ typedef char _check_for_GOINTBITS_bit_pointer_matching_GoInt[sizeof(void*)==GOINTBITS/8 ? 1:-1]; #ifndef GO_CGO_GOSTRING_TYPEDEF typedef _GoString_ GoString; #endif typedef void *GoMap; typedef void *GoChan; typedef struct { void *t; void *v; } GoInterface; typedef struct { void *data; GoInt len; GoInt cap; } GoSlice; #endif /* End of boilerplate cgo prologue. */ #ifdef __cplusplus extern "C" { #endif ` // gccExportHeaderEpilog goes at the end of the generated header file. const gccExportHeaderEpilog = ` #ifdef __cplusplus } #endif ` // gccgoExportFileProlog is written to the _cgo_export.c file when // using gccgo. // We use weak declarations, and test the addresses, so that this code // works with older versions of gccgo. const gccgoExportFileProlog = ` #line 1 "cgo-gccgo-export-file-prolog" extern _Bool runtime_iscgo __attribute__ ((weak)); static void GoInit(void) __attribute__ ((constructor)); static void GoInit(void) { if(&runtime_iscgo) runtime_iscgo = 1; } extern size_t _cgo_wait_runtime_init_done(void) __attribute__ ((weak)); `