// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package tls partially implements TLS 1.2, as specified in RFC 5246, // and TLS 1.3, as specified in RFC 8446. package tls // BUG(agl): The crypto/tls package only implements some countermeasures // against Lucky13 attacks on CBC-mode encryption, and only on SHA1 // variants. See http://www.isg.rhul.ac.uk/tls/TLStiming.pdf and // https://www.imperialviolet.org/2013/02/04/luckythirteen.html. import ( "bytes" "context" "crypto" "crypto/ecdsa" "crypto/ed25519" "crypto/rsa" "crypto/x509" "encoding/pem" "errors" "fmt" "net" "os" "strings" ) // Server returns a new TLS server side connection // using conn as the underlying transport. // The configuration config must be non-nil and must include // at least one certificate or else set GetCertificate. func Server(conn net.Conn, config *Config) *Conn { c := &Conn{ conn: conn, config: config, } c.handshakeFn = c.serverHandshake return c } // Client returns a new TLS client side connection // using conn as the underlying transport. // The config cannot be nil: users must set either ServerName or // InsecureSkipVerify in the config. func Client(conn net.Conn, config *Config) *Conn { c := &Conn{ conn: conn, config: config, isClient: true, } c.handshakeFn = c.clientHandshake return c } // A listener implements a network listener (net.Listener) for TLS connections. type listener struct { net.Listener config *Config } // Accept waits for and returns the next incoming TLS connection. // The returned connection is of type *Conn. func (l *listener) Accept() (net.Conn, error) { c, err := l.Listener.Accept() if err != nil { return nil, err } return Server(c, l.config), nil } // NewListener creates a Listener which accepts connections from an inner // Listener and wraps each connection with [Server]. // The configuration config must be non-nil and must include // at least one certificate or else set GetCertificate. func NewListener(inner net.Listener, config *Config) net.Listener { l := new(listener) l.Listener = inner l.config = config return l } // Listen creates a TLS listener accepting connections on the // given network address using net.Listen. // The configuration config must be non-nil and must include // at least one certificate or else set GetCertificate. func Listen(network, laddr string, config *Config) (net.Listener, error) { if config == nil || len(config.Certificates) == 0 && config.GetCertificate == nil && config.GetConfigForClient == nil { return nil, errors.New("tls: neither Certificates, GetCertificate, nor GetConfigForClient set in Config") } l, err := net.Listen(network, laddr) if err != nil { return nil, err } return NewListener(l, config), nil } type timeoutError struct{} func (timeoutError) Error() string { return "tls: DialWithDialer timed out" } func (timeoutError) Timeout() bool { return true } func (timeoutError) Temporary() bool { return true } // DialWithDialer connects to the given network address using dialer.Dial and // then initiates a TLS handshake, returning the resulting TLS connection. Any // timeout or deadline given in the dialer apply to connection and TLS // handshake as a whole. // // DialWithDialer interprets a nil configuration as equivalent to the zero // configuration; see the documentation of [Config] for the defaults. // // DialWithDialer uses context.Background internally; to specify the context, // use [Dialer.DialContext] with NetDialer set to the desired dialer. func DialWithDialer(dialer *net.Dialer, network, addr string, config *Config) (*Conn, error) { return dial(context.Background(), dialer, network, addr, config) } func dial(ctx context.Context, netDialer *net.Dialer, network, addr string, config *Config) (*Conn, error) { if netDialer.Timeout != 0 { var cancel context.CancelFunc ctx, cancel = context.WithTimeout(ctx, netDialer.Timeout) defer cancel() } if !netDialer.Deadline.IsZero() { var cancel context.CancelFunc ctx, cancel = context.WithDeadline(ctx, netDialer.Deadline) defer cancel() } rawConn, err := netDialer.DialContext(ctx, network, addr) if err != nil { return nil, err } colonPos := strings.LastIndex(addr, ":") if colonPos == -1 { colonPos = len(addr) } hostname := addr[:colonPos] if config == nil { config = defaultConfig() } // If no ServerName is set, infer the ServerName // from the hostname we're connecting to. if config.ServerName == "" { // Make a copy to avoid polluting argument or default. c := config.Clone() c.ServerName = hostname config = c } conn := Client(rawConn, config) if err := conn.HandshakeContext(ctx); err != nil { rawConn.Close() return nil, err } return conn, nil } // Dial connects to the given network address using net.Dial // and then initiates a TLS handshake, returning the resulting // TLS connection. // Dial interprets a nil configuration as equivalent to // the zero configuration; see the documentation of Config // for the defaults. func Dial(network, addr string, config *Config) (*Conn, error) { return DialWithDialer(new(net.Dialer), network, addr, config) } // Dialer dials TLS connections given a configuration and a Dialer for the // underlying connection. type Dialer struct { // NetDialer is the optional dialer to use for the TLS connections' // underlying TCP connections. // A nil NetDialer is equivalent to the net.Dialer zero value. NetDialer *net.Dialer // Config is the TLS configuration to use for new connections. // A nil configuration is equivalent to the zero // configuration; see the documentation of Config for the // defaults. Config *Config } // Dial connects to the given network address and initiates a TLS // handshake, returning the resulting TLS connection. // // The returned [Conn], if any, will always be of type *[Conn]. // // Dial uses context.Background internally; to specify the context, // use [Dialer.DialContext]. func (d *Dialer) Dial(network, addr string) (net.Conn, error) { return d.DialContext(context.Background(), network, addr) } func (d *Dialer) netDialer() *net.Dialer { if d.NetDialer != nil { return d.NetDialer } return new(net.Dialer) } // DialContext connects to the given network address and initiates a TLS // handshake, returning the resulting TLS connection. // // The provided Context must be non-nil. If the context expires before // the connection is complete, an error is returned. Once successfully // connected, any expiration of the context will not affect the // connection. // // The returned [Conn], if any, will always be of type *[Conn]. func (d *Dialer) DialContext(ctx context.Context, network, addr string) (net.Conn, error) { c, err := dial(ctx, d.netDialer(), network, addr, d.Config) if err != nil { // Don't return c (a typed nil) in an interface. return nil, err } return c, nil } // LoadX509KeyPair reads and parses a public/private key pair from a pair // of files. The files must contain PEM encoded data. The certificate file // may contain intermediate certificates following the leaf certificate to // form a certificate chain. On successful return, Certificate.Leaf will // be nil because the parsed form of the certificate is not retained. func LoadX509KeyPair(certFile, keyFile string) (Certificate, error) { certPEMBlock, err := os.ReadFile(certFile) if err != nil { return Certificate{}, err } keyPEMBlock, err := os.ReadFile(keyFile) if err != nil { return Certificate{}, err } return X509KeyPair(certPEMBlock, keyPEMBlock) } // X509KeyPair parses a public/private key pair from a pair of // PEM encoded data. On successful return, Certificate.Leaf will be nil because // the parsed form of the certificate is not retained. func X509KeyPair(certPEMBlock, keyPEMBlock []byte) (Certificate, error) { fail := func(err error) (Certificate, error) { return Certificate{}, err } var cert Certificate var skippedBlockTypes []string for { var certDERBlock *pem.Block certDERBlock, certPEMBlock = pem.Decode(certPEMBlock) if certDERBlock == nil { break } if certDERBlock.Type == "CERTIFICATE" { cert.Certificate = append(cert.Certificate, certDERBlock.Bytes) } else { skippedBlockTypes = append(skippedBlockTypes, certDERBlock.Type) } } if len(cert.Certificate) == 0 { if len(skippedBlockTypes) == 0 { return fail(errors.New("tls: failed to find any PEM data in certificate input")) } if len(skippedBlockTypes) == 1 && strings.HasSuffix(skippedBlockTypes[0], "PRIVATE KEY") { return fail(errors.New("tls: failed to find certificate PEM data in certificate input, but did find a private key; PEM inputs may have been switched")) } return fail(fmt.Errorf("tls: failed to find \"CERTIFICATE\" PEM block in certificate input after skipping PEM blocks of the following types: %v", skippedBlockTypes)) } skippedBlockTypes = skippedBlockTypes[:0] var keyDERBlock *pem.Block for { keyDERBlock, keyPEMBlock = pem.Decode(keyPEMBlock) if keyDERBlock == nil { if len(skippedBlockTypes) == 0 { return fail(errors.New("tls: failed to find any PEM data in key input")) } if len(skippedBlockTypes) == 1 && skippedBlockTypes[0] == "CERTIFICATE" { return fail(errors.New("tls: found a certificate rather than a key in the PEM for the private key")) } return fail(fmt.Errorf("tls: failed to find PEM block with type ending in \"PRIVATE KEY\" in key input after skipping PEM blocks of the following types: %v", skippedBlockTypes)) } if keyDERBlock.Type == "PRIVATE KEY" || strings.HasSuffix(keyDERBlock.Type, " PRIVATE KEY") { break } skippedBlockTypes = append(skippedBlockTypes, keyDERBlock.Type) } // We don't need to parse the public key for TLS, but we so do anyway // to check that it looks sane and matches the private key. x509Cert, err := x509.ParseCertificate(cert.Certificate[0]) if err != nil { return fail(err) } cert.PrivateKey, err = parsePrivateKey(keyDERBlock.Bytes) if err != nil { return fail(err) } switch pub := x509Cert.PublicKey.(type) { case *rsa.PublicKey: priv, ok := cert.PrivateKey.(*rsa.PrivateKey) if !ok { return fail(errors.New("tls: private key type does not match public key type")) } if pub.N.Cmp(priv.N) != 0 { return fail(errors.New("tls: private key does not match public key")) } case *ecdsa.PublicKey: priv, ok := cert.PrivateKey.(*ecdsa.PrivateKey) if !ok { return fail(errors.New("tls: private key type does not match public key type")) } if pub.X.Cmp(priv.X) != 0 || pub.Y.Cmp(priv.Y) != 0 { return fail(errors.New("tls: private key does not match public key")) } case ed25519.PublicKey: priv, ok := cert.PrivateKey.(ed25519.PrivateKey) if !ok { return fail(errors.New("tls: private key type does not match public key type")) } if !bytes.Equal(priv.Public().(ed25519.PublicKey), pub) { return fail(errors.New("tls: private key does not match public key")) } default: return fail(errors.New("tls: unknown public key algorithm")) } return cert, nil } // Attempt to parse the given private key DER block. OpenSSL 0.9.8 generates // PKCS #1 private keys by default, while OpenSSL 1.0.0 generates PKCS #8 keys. // OpenSSL ecparam generates SEC1 EC private keys for ECDSA. We try all three. func parsePrivateKey(der []byte) (crypto.PrivateKey, error) { if key, err := x509.ParsePKCS1PrivateKey(der); err == nil { return key, nil } if key, err := x509.ParsePKCS8PrivateKey(der); err == nil { switch key := key.(type) { case *rsa.PrivateKey, *ecdsa.PrivateKey, ed25519.PrivateKey: return key, nil default: return nil, errors.New("tls: found unknown private key type in PKCS#8 wrapping") } } if key, err := x509.ParseECPrivateKey(der); err == nil { return key, nil } return nil, errors.New("tls: failed to parse private key") }